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PREFACE

The interaction between ergodic theory and discrete groups has a long history and
much work was done in this area by Hedlund, Hopf, Myrberg, and others over
fifty years ago. During the last ten years there has been a great resurgence of
interest in the area and the field is currently very active. Great advances have
been made, and the theory now stands as a well developed branch of
mathematical research.

The purpose of this book is two-fold. Firstly, we aim to present a connected
account from first principles of the classical work in this area. Much of this
material dates to the thirties, and some is difficult to locate. We will gather this
material in one place with suitable explanations, simplifications, and connections
drawn with the more recent body of literature. Our second aim is to present an
introduction to the deep and powerful theory of measures on the limit set of a
discrete group which has recently been developed by Patterson, Sullivan, and
others. This circle of ideas has applications in a wide variety of problems
involving discrete groups, and the notion of a measure on the limit set has
emerged as one of the most powerful tools in the theory. We start from first
principles and give a detailed account of the construction of the measure classes
and the related conformal densities. We then consider ergodic results relative to
these new measures and include a discussion of applications of these results to
Hausdorff dimension of the limit set and estimates on the orbital counting
function.

The book assumes a working knowledge of graduate level analysis and
topology. Aside from this, every attempt has been made to keep the presentation
self contained. Many of the results we give are to be found in the literature and
we have attempted to provide the correct attribution. The proofs that are given
here have in some cases been taken directly from the source but for the most part
have been constructed by combining the ideas of more than one author.



viii Preface

This book grew out of a fascination for the marvelous work of Dennis
Sullivan and S.J. Patterson. Their contributions in recent years to the theory of
discrete groups have been astounding, and the theory covered in this book
represents just one area of their influence. A major proportion of the results we
present are due to Sullivan, although this has not always been made explicit.

With the major purpose of providing the introduction and background
necessary for an understanding of, and an appreciation for, measures on the limit
set of a discrete group, there are many parts of the subject which are not
mentioned — indeed to cover them all would occupy several volumes such as this.
In particular we have not touched on symbolic dynamics, nor on the connection
between our conformal measures and Gibbs measures recently exploited in the
beautiful work of Rees. The survey article of Patterson [Patterson, 1987] should
be consulted for further information on these topics and for a good bibliography.

There are many individuals who have helped in the preparation of this
book. My friend and teacher Alan Beardon has been a constant source of
encouragement and support, and has provided crucial assistance at several stages
of the project. My colleague Peter Waterman has read the entire manuscript with
great care and provided many valuable insights. Lars Ahlfors has graciously
permitted me to quote extensively from his beautifully written Minnesota lecture
notes. James Norris has been a very supportive Dean, providing me both with
facilities and with time for the completion of the project. Thanks are also due to
Sara Clayton for help with the preparation of the manuscript. I would like also
to express gratitude to the National Science Foundation for their support during
the early stages of the project. Of course, I owe a major debt of gratitude to my
family who have put up with my constant preoccupation with "the book" over a
long period of time.

Peter Nicholls
DeKalb Illinois
March 1989
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CHAPTER 1

Preliminaries

1.1 Area

One of our main concerns in this book is with the measure of certain subsets of
the unit sphere. Accordingly, in this section, we introduce Lebesgue surface area
on the unit sphere in R*®.

Throughout we denote by B the unit ball in R® and by S the unit sphe{'?é
Thus, denoting points of R® by z =(z,,z4...,%,) and writing lz|= Zziz

we have
B ={z:|lz]<1} and S ={z:|lz|=1}.

Note that we will throughout write vectors as rows, but in operations involving
matrices, they will be interpreted as columns. Given a point (z,,24,...,2, ) in R "
we introduce polar coordinates as follows, Set r? = Zz,-2 and, for j satisfying
1<j < n, deflne §; to be the angle between the j % coordinate vector and the
vector (0,0,...,0,2;,%; 41512y, ) Thus

8; = arccos [z;/(zf + .tz 6; € [0,n] for 1<j <n-1,

arccos [zn—l/(znz—l +zn2)l/2] if In 20

n=1= lor — arccos [z,_,/(z.2., +z,2)"/% if z, <O bn1€[0:2M).

Proceeding inductively, we can show that
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z, = r cosb,

z; = rsinfdysinb, - - - sinf;_,cosd; for 1 < j < n.
z, = rsind;sinb, - - - sind, _,
The Jacobian of the transform (r,0,,6,, .. ., 8,_;) = (2,,%5,...,2,) is calculated

inductively to be
r® = Ysin8,)" ~*(sin 6,)" ~3....(sin b, _,).
Thus the volume element in polar coordinates is
dV = r*Ysin )" Hsin,)* =3 - - - (sinf,_,)d0,db, - - - d,_,dr
and the surface area element on the unit sphere S is

dw = (sin )" %(sin 0)" 3 - - - (sinb,_,)d6,d0, - - - b

n-1-

We shall have occasion to measure the surface area of a subset of S interior to a
ball and the following lemma is useful.

Lemma 1.1.1 Forn€S and X > 0,set A ={z €S : |z — 9] < \}. Then
w(d) =M [ (sin0)*~2d0

where g = arccos (1 — 2\?/2), and M is an absolute constant.

Proof. We may as well assume that #=(1,0,0,..,0) and then, for
z€S8,|n—z|*=201 —z,) where z =(z,,25, . ..,2,). From this it follows
that A = {z €S :1 — X 2/2 <z, <1}. Recall however that z, = cosf, and the
lemma follows when we integrate the surface area element over A and set

2 % x
M =L L L (sin8,)"3(sin )" 4 - - - (sinb,_5)d8, - - - d6,_,

which is an absolute constant — namely, the (n-2)-dimensional Lebesgue measure
of the unit sphere in R*~1. O

We shall be much concerned in later chapters with the Hausdorff measure
and dimension of various subsets of the unit sphere, and we briefly review the
deflnitions. Suppose E is a Borel set in R® and o > 0 is given, if we denote by
A(z,¢) the ball centered at z of Euclidean radius ¢, then we deflne for € > 0

o0
AYE) =inf{3 e : E C|Y Alg)se;); ¢ <}
J=1
This clearly decreases as ¢ increases and the (possibly inflnite) limit

A(B) = lim A(E)
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exists. This quantity is called the o-dimensional Hausdorff measure of E. The
Hausdorff dimension, d(E), of a Borel set E is deflned by

d(E) =inf {o: A,(E) = 0} =sup {a: A,(E) = +oo}. (1.1.1)
A consequence of this deflnition is that if 0 < A (F) < +oo then d(E) = o
1.2 The Hyperbolic Space

The unit ball B of R" is a model for n-dimensional hyperbolic space and
supports a metric p derived from the differential

2|dz |
1— |z
Lines in the space are arcs of circles orthogonal to the unit sphere S and are
geodesics for the metric p. Angle is Euclidean angle.

dp =

An alternative model of n-dimensional hyperbolic space is the upper half
space H of R*®
H = {z =(z,,79,0..,7,) : 7, > 0}
together with the metric p derived from the differential
|dz |

dp = .
zn

Lines in this space are arcs of circles orthogonal to the plane {z : z, =0} and are
geodesics for the metric p.

Note that we use p for the metric in both the ball and the upper half space
model — no confusion should arise. We shall be working almost entirely in the
ball but will from time to time be using the upper half space model, each has its
own particular advantages.

There is a wealth of information on hyperbolic geometry to be found in
[Beardon, 1983] and in [Ahlfors, 1981, Chapter 3] — we will quote extensively
from these sources. The formula for the hyperbolic distance between a point and
a line is to be found in [Beardon, 1983, p.162] but not in the form best suited for
our purposes. We state the result now, although we will not be in a position to
prove it until the next section.

Theorem 1.2.1 Suppose ¢ €EB and 7,§ €S, n+#&. Let s be the hyperbolic
distance from @ to the geodesic joining £ and # then

2la = lla =]

l€ = nl(t = laP)

For later purposes we introduce the notion of "shadows". Suppose ¢ €B and

coshs =
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6 > 0 are given, and let A(a,8) denote the hyperbolic ball of center a and radius
8. The set 5(0:a,0) is the projection from the origin onto S of the ball A(e,8) and
so every point of b(0:a,d) lies in the shadow of the ball. A point £€S clearly
belongs to b(0:a,0) if and only if the radius to € passes within a hyperbolic
distance é of a. From theorem 1.2.1 this is equivalent to

la —€lla +€l< (1 —|al?)coshé and e +€|> |a — €. (1.2.1)

It will be useful to compute the w-measure of the shadow 5(0:a,8) and we have
the following.

Theorem 1.2.2 Foréd> 0

w(b(0:a,8) ~

uniformly as |a|— 1 in B, where M is the constant of lemma 1.1.1.

M (°°Sh:6:ll)("_l)/2 1 —=la])!

Proof. Suppose ¢ €EB and EE€ S then
la —€P = 1+ |al? —2a.¢
le +€P2 = 14 |af* +2a.€,
and

£—° _2_2a.£
Tl] o]

We use these equations and inequality (1.2.1) to note that £ € 5(0:a,9) if and only
if

(1 + |a]?)? — 4(a. 6 < (1 = |a |?)? cosh?s
in other words,
A+ laPP—(2-le—a/lalPy [al < (1 = la[*)cosh®.
This reduces to

2la] = (1 + |a [} = (1 = |a [2f cosh2ep/22 _ o

a
i [ |72
say. A routine calculation shows that
A ~(1 = la|)(cosh26 —1)"/2 as |a|—1. (1.2.2)

Using lemma 1.1.1 we see that
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w(S(a,8) =M [ (sin 6)%d0 (1.2.3)

where p = arccos (1 — N2/2). Clearly u~ (1 — |a|)(cosh?6 —1)1/2 as |a|—1
(from (1.2.2)) and, for @ between 0 and p, we approximate sind by 8. The theorem
now follows from (1.2.3). O

In order to measure the size of various subsets of the unit sphere, the
following deflnition is useful. If ¢ € B and k,a > 0 we deflne

z_a
Tal

We next consider cones at a point €€S. If 2€B,E€ES and M\ satisfles
0 < N < 7/2 then we say z belongs to the cone at € of opening M if the angle
between the vectors £ and £ — z is at most X and, further, |z — €] < 2cos\. The
cosine of the angle between € and € — z is calculated to be

E(—z) _ 2—26z _ (E—2)-z)+1—|z|* _ l€—zfP+1-]z?
[elle — =] 2] =] 2]€ - «] 2f€ - =]

and we have proved the following,.

Ia:k,0)={z€S: < k(1 —|a])*}. (1.2.4)

Lemma 1.2.3 If 1 €B, £€S and X satisfles 0 < X < m/2 then z belongs to
the cone at € of opening X if and only if |z — €] < 2cosh and

=2 +1— |2

> cosA.
2l€ — «|

Theorem 1.2.4 Suppose E€S and {z,} is a sequence of points of B with
|z,| =1 as n — oo. The following are equivalent.

1. There exists ¢ > 0 such that, for n large enough, z, lies in the cone of
opening a at &.

2. There exists b > 1 such that, for n large enough,
|z, — €l < 8(1 = |z, ).
3. There exists ¢ > 0 such that, for n large enough,
€ € I(z,:c,1).
4. There exists d > 0 such that if { is any geodesic ending at € then, for n
large enough, p(z,,!) < d .

Proof. If (1) is true we note that, for n large enough,



6 Chapter 1 Preliminaries

1€ =2 ? +1 = s, 2
2I£ - Iy [
from lemma 1.2.3. Since |z, | — 1 we see that, given € > 0, for n large enough,

(1 - Izn I)

(cosa —¢€)’

> cos a

IE - Iy I <
Thus (1) implies (2). Now suppose (2) is true and we note that

A e Y
_ 2 _
le -l = el

Therefore
= )V3(1 = |z )
L L Nk
We may take ¢ = (b2 —1)!/2 4+ ¢ and (3) follows. Assuming (3) we let [ be a

geodesic ending at € and suppose that 7 is the other end point of {. From
theorem 1.2.1 we see that

2Izn - E“zn - 77|
l€ —nl(x = 1=z, P

cosh p(z,,l) =

7. —
which is asymptotic (as n — 00) to (1|_1|?§|I7 However, from (3)
n

IE_an
1 -z

n

< (1422

for n large enough and (4) is true. Finally, we suppose (4) is true and note from
theorem 1.2.1 that, for n large enough,

2|zn - E“zn - 77|

coshd.
l€ —nl(1 = |z, %)
Thus, from our remarks above, if € > 0 is given then |z,, — ¢l < coshd + ¢
’ ’ eiven then Ty '
For n large enough,
IE_:"'nIZ'l"l_I:"'nl2 1 _
2le = z,1 coshd + ¢

and (1) follows from lemma 1.2.3. This completes the proof of the theorem. O

It should be noted, from our working above, that the constants a,b,c,d are
related by
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b~ —_ = coshd (1 + c?)V/?
cosa

In other words, (1) implies (2) with b = ﬁ + ¢ for any ¢ > 0 and (2) implies

(1) with @ = arccos(1/b) + ¢ for any € > 0. Similar remarks hold for the
relations between b,c and d.

We next consider horospheres. A horosphere at €€ S is a sphere in R*
which is internally tangent to the unit sphere S at £&. A horoball is the interior
of a horosphere.

Theorem 1.2.8 If£€S,z2€B and 0 < k < 1 then z is on the horosphere at
€ of Euclidean radius k if and only if
1—k

(1= lePle - gl? = 12
The point z is in the horoball at £ of radius &£ if and only if

(1= lsP)le — g2 > L&,

Proof. Suppose z €B with (1 — |z[*)]z — €|72 = then

1—k
k

1 —

1-lap = 1 te—ge-g = 12K

k

(lz]? +1 = 22.€)

and so
2 -
oz = (2l +1—2) (1.2.5)
Now the square of the distance of z from the center of the horosphere is

le = (@ — k)P = |oPP + (0 — k) — 201 — k). €

lzlP+ Q@ = k2 =(lz]? +1 = 2k)

= k2
where we substituted for z. £ from (1.2.5) above. Thus z lies on the horosphere.
Our argument is clearly reversible and we have the if and only if condition. The
statement concerning the horoball is an easy modiflcation. O

1.3 Moebius Transforms

In this section we consider Moebius transforms acting in R", derive several of
their properties, and show that those preserving the ball are isometries of
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hyperbolic space. For a full and detailed account, the reader is referred to
[Beardon, 1983, Chapter 3] or [Ahlfors, 1981, Chapter 2]. Much of what we do in
this section is in fact a slightly compressed version of Ahlfors’ account. We start
by deflning a similarity as a map R" — R™" given by

T = mz+b

where b €ER™ and m is a conformal matrix (i.e., a positive constant multiple of
an orthogonal matrix). Reflection in the unit sphere is given by
—z

|=|?

and we deflne the full Moebius group as the group generated by J and all the
similarities.

z — z' = J@z) =

The derivative of a self map of R" is the Jacobian matrix, and we will use
the prime notation. Observe that the derivative of a similarity Y(z)=m z + b is
the constant matrix m. In order to write down the derivative of J we introduce
the matrix Q(z) by

Z; .’L‘j
B
and leave it as an exercise to check that, for z # O,

J'(z) = I+P[I—2Q(z)]. (1.3.1)

Since Q2= Q we have [ —2Q]2=1I and it follows that I —2Q is an
orthogonal matrix. For each z %0, J! (z) is a conformal matrix.

Q(z)l i =

Use of the chain rule shows that 4'(z) is a conformal matrix for any
Moebius ¥ — in other words, Moebius transforms are conformal. For any
Moebius v we denote by |y'(z)| the positive number such that ' (z)/ |v' () |
is orthogonal. Thus |’1'(z)| is the linear change of scale at z, the same in all
directions.

The following equation, which will be fundamental to our work, follows
from the chain rule and application of (1.3.1).

Nz) =) = W' @12 @) V2 e =y . (1.3.2)
Application of (1.3.2) proves the invariance of the absolute cross ratio

|a—c|. |b—d|

|a,b,c,d|= Ia_dr |b—c|

in the sense that
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I7(a)1'7(b)1'7(c)1’7(d)| = Ia1b’c1d I (1'3'3)

We denote by GM(B) the subgroup of the full Moebius group which leaves the
unit ball invariant, and prove the following lemma.

Lemma 1.3.1 If yEGM(B) and ~(0) =0 then < is a rotation. In other
words, 7(z) = k £ where k is an orthogonal matrix.

Proof. (Ahlfors, 1981 p.21) Let us suppose first that 4{oo) = oo. Since

I’Y(z)17(y)10’00| = I.’L‘, y101°0|
we deduce that |y(z)|/ |z | =), a constant. The equation

|’7(.1:),0,’1(y),00| = |z101y’°°|

yields |y(z) —(y) |2 =X|z — y |2 It follows that for any z y(z) = Xz and
S0

WMz +y) —z) =) |2 = M](z+y)—z —y|? = 0.

Thus vz +y)=~(z) + v(y). From this we deduce that «' is constant, and
A(z) = m z with a constant conformal matrix m. Since |mz | =1for |z | =1
we have that m is orthogonal as required.

If we now suppose that 4 !(oo) = b # oo then the Moebius transform
A(z —5")" + b) fixes 0 and oo and so, by our working above, we have

AWz) = m((z=b)" +5")

for a constant conformal matrix m. But < preserves the unit ball and so
I(z—=5)" + 5* | is a constant for |z | =1. But

—b * b * = I T I
e =0+ "I = o
and so |z — b | is constant on the unit sphere — this is impossible since b %0,
and the contradiction completes the proof of the lemma. O

With this result in hand, we determine the form of the most general
Moebius transform preserving B. From now on, indeed for the rest of the book,
we conflne attention to the orientation preserving Moebius transforms preserving
B. These are the transforms containing an even number of factors J and sense
preserving similarities. Thus, from this point on, M(B) will be used to denote the
group of orientation preserving Moebius transforms preserving B.

Given a €B, a #0, let S, be the sphere centered at e’ and of radius
(1—]a |2)1/2/ | a | — this sphere intersects the unit sphere orthogonally. Let
o, denote reflection in S, so that
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o(z) = o’ +(la’ [ =1)(z —a")".

We write R, for the reflection in the plane through the origin perpendicular to a
and deflne the canonical map

T,(z) = R, 00,(z).

As an immediate consequence of lemma 1.3.1, we note that the most general
Moebius transform preserving the ball and mapping e¢ to O can be written as T,
followed by a rotation.

We need to derive explicit formulae for T,(r) and note first that the
reflection R, amounts to multiplication by the matrix I —2Q(a). This leads
immediately to

T,(z) = —a* +(la* |2 =1)[I —2Q(a)l(z —a")". (1.3.4)

To proceed further we need a lemma.

Lemma 1.3.2 Foranyz,y
=9 +y = lyl?[I-2QW)(=" —v)".
Proof. (Ahlfors, 1981 p.22) Consider two transforms

A(@)=(z—y")" and B(z)= |y |*[I -2Q)(=" - )" -y

and note that 0, oo are fixed points of AB~L. As in the proof of lemma 1.3.1, we
see that (AB~!)! is constant. Now note that

(AB7'Y (z) = A" (B™Y(2)).(B' (B~ (=)' =(4"(B') )0 B~ !(z)
which is constant. Thus, for some N\, A’ (z) = AB' (z). Differentiation yields

1) = 1—2QE —y")
SR PR
by - LU =200)U 206" ~y) U ~206)

le* =y 1?2

So for z = y we obtain

I1-2Q(y) lyl?
A'y) =B (y) =1 :
a-lvl?»?
It follows that A'(z) = B'(z) for all z and, since A(0) = B(0) = —y, we have
A(z) = B(z) and this completes the proof. O

Note from the formulae for A’ and B’ that
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(I —2Q) (I —2Q(—3") = (I —2Q(" —y)(I —2Q(c)). (13.5)

Replace y by @ in lemma 1.3.2 and multiply by I — 2Q(a) to obtain
(I-2Q(a)z —a*)" = a + la|¥=’ —a)’
and, using this in (1.3.4), we have
To(z) = =a’ +a(la” P =)+ (1 = la|?)(z" —a)".
This reduces to
T,(z) = —a +(1— |a|H)(z* —a)". (1.3.6)

This formula is easy to differentiate and yields

T,'(z) = 1= la|)[ —2QE" —a)|[I —2Q(z)] .

|z* —al?|2]?

Introducing the notation

Me,a) = (I —2Q(z" — o) [I —2Q(2)] (13.7)

we have

T, (z) = }"“'2 Alz,a). (1.3.8)
|z* —a|?|z|?

Recalling that I —2Q(a) is orthogonal for any @, we see that A(z,a) is
orthogonal and so

1—la|®
lo* —al? |z |*
Our next task is to compute |T,(z)|. For this we use the difference formula
(1.3.2) to obtain

IT,,(.’L‘)I= IT,,(.’L‘)— Ta(a)l = ITaI(:"')Il/2 ITa'(a)Il/2 I.’L‘ —a I
andso |T,(z)|= |z —allz|™ |2* —a|™'. An easy computation leads to

1T, (2)| = (1.3.9)

Crer = U= 12l = al?)
1 ITa( )I Izlzlzt_aIZ

and, combining this with (1.3.9),
/@l
1= 1T.=)1?  1-|z]?

Thus we have proved the following.
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Theorem 1.3.3 The metric p is invariant under all Moebius transforms
preserving B. Speciflcally, for any £ € B and any Moebius 4,

1- )12 = @)= 1z1?.

As a consequence we derive the following.

Theorem 1.3.4  If v is a Moebius transform preserving B and €€ S then

Iy (&)l =1 = h(o)P) € — 0)|I™>
Proof. From the chain rule, (v~ 'Y (/(€)) = (4’ (€))™! which, when € is replaced
by 4~Y(€) yields

(Y ©) = (v (rien™ (1.3.10)
Now consider (1.3.2) with z = 4~'(€) and y = 0, and we have
l€ —~OF = h' (Y&’ ).

From theorem 1.3.3 we see that 1 — h(0)|?> = by’ (0)] and so

l€ =) F = b’ (eI — ho)l)
which, in view of (1.3.10), is the required result. O

It will be important to us later to understand how the matrix A(z,y)
behaves under the action of a Moebius transform preserving B.

Lemma 1.3.6 If v is a Moebius transform preserving B and if z,y € B then

. V(@) W) A
ST = T S

Proof. (Ahlfors, 1981 p.29) We first show that

Tap)0e) = ey Toe). (1311)

Let L(z) and R(z) denote the left and right hand sides of (1.3.11). Clearly
L(y) = R(y) =0 and so LR~!(0) = 0. However,

L = 7' (y) =R'
W)=1 ) 2 (v)
the left equality being obvious and the right following from theorem 1.3.3. Thus
(LR™Y ()= L'(y)(R'(y))™! =1I and so LR™! =1 — this proves (1.3.11).
Differentiation of (1.3.11) yields
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!
T Az NA (2) = —2 (v) T 'z
Ay) (W) () T Y (z)
and the lemma follows directly from (1.3.8) when we compare the orthogonal
matrix parts of both sides. O

Our next task is a classiflcation of Moebius transforms. This classiflcation is
based upon flxed points — note that any Moebius transform < preserving B also
preserves B and thus, by the Brouwer flxed point theorem, flxes some point of B.
A transform with precisely one flxed point which lies on S is said to be
parabolic, a transform with precisely two flxed points which lie on S is said to
be loxodromic, any other transform is elliptic. We need to consider parabolic
transforms in some further detail.

It will be convenient to start our discussion in the upper half space model
H ={(z,,29,-.,3,)ER" : 3, > 0}

where we assume that the parabolic transform under consideration preserves H
and fixes oo. It is well known (see [Beardon, 1983, p.40] for example) that any
transform ¢ preserving H and flxing oo may be written in the form

HNz) = rAz + 24

where r > 0, 25 =(z¢,z&, .. .,2371,0) ER™, and A is a matrix of the form
BoO
01
where B is an (n —1)X(n —1) orthogonal matrix. Since A is orthogonal, we see
that (rA — I) is invertible for r % 1 and so a flxed point of ¢ (other than oo)

exists in this case. Since our transform is parabolic, we must have r = 1. Given
the form of A and z, the following result is evident.

Theorem 1.3.8 If ¢ is a parabolic transform preserving H and flxing oo then,
for any k > 0, the (n —1)-dimensional hyperplane {z, = k} is preserved by ¢.

We may assume (by a conjugation if necessary) that the matrix A discussed
above is of the form
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— see [Beardon, 1983, p.25] for example — where r is a non-negative integer, s is
a positive integer, I, is the s Xs identity matrix, and

cos §, —sin 0,,]

Ak sin 0* COs 0*

We assume in this formulation that cos §; # 1, 5 =1,2,...,r and that s >2
(otherwise ¢ has a flxed point in H). With these assumptions, and writing
Hz) = Az + 2, we set a =(zd,..,z¢"0,0,...,0) and B =
(0,0,0..,0,z27*! ..., 2371,0). If we now deflne a new transform R by
R(z) =zA + o we note that R has flxed points in H and is thus an elliptic
transform. Now deflne T by T(z) ==z + 3 and note that RoT = ToR = ¢.
We have proved the following.

Theorem 1.3.7 If ¢ is a parabolic transform preserving H and flxing oo then
there exists an elliptic transform R and a pure translation T such that

¢=ToR =RoT
further, R and T are unique.

Thus to any parabolic transform flxing oo we may associate a unique
translation vector 8 as given by theorem 1.3.7. Note further that ¢ acts as a pure
translation on the plane (0,0,...,0,2% *1,z27+2 . 2*=10). We call this plane the
translation plane of ¢.

We come next to the proof of theorem 1.2.1. Consider first the special case
where the geodesic joining £ to 7 is a diameter of the ball and the geodesic from a
which is orthogonal to this diameter is another diameter. In this case the distance
s from the geodesic to a is just p(0,a). But p(0,a) =log((1 + |a)/(1 = |a]))
and so

2
cosh [p(0,0)] = 1* lalP _ la —¢lla =l

1—|af? 1—|af

which is the required result.
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We now proceed to the general case and let £ be the point on the geodesic
joining € to n which is closest to a. Let + be a Moebius transform preserving B
with ~(z) =0. Since the hyperbolic distance is invariant under Moebius
transforms we have, using the special case already proved,

h(a) = «(§)lh(a) — »n)l
1 - he)l?
b (@)lb’ ©OFh’ ()[*la —€lla =l
b' (@)l = laP?)
_ he -rmlla —€lla -l
€ = nl(1 = |al?)

2la — £lla =l

€ =7l = [al?)
where we have used (1.3.2). This is the required result. O

cosh s

From time to time we will need to relate Moebius transforms preserving H
to those preserving B. Consider therefore the transform V which maps B onto
H and is deflned by

V(ypye, -« - 9) = (T1%9000Ty)

where
2 .
4 - Iy——y;lz i =123...,n—1
n
1— |yl
T, = —0
" ly — e, |?

with e, denoting the vector (0,0,0,...,1). The map V is a Moebius transform of
R™ [Ahlfors, 1981, p.35] and will be used extensively. Note in particular that ~ is
a Moebius transform preserving H if and only if V™!V is a Moebius transform
preserving B.

1.4 Discrete Groups

As in the previous section, we denote by M(B) the full group of Moebius
transforms preserving B. Recall that the most general element of M(B) may be
written as a canonical transform T, followed by a rotation. It is clear then that
M(B) may be topologized by O(n)XB. A subgroup I' of M(B) is discrete if
the identity has a neighborhood whose intersection with I' reduces to the identity.
We comment in passing that a discrete group is necessarily countable.
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For a €B we deflne the orbit of a, I(a), to be the set {¥(a): YET}. The
following result is fundamental to the theory. The proof is straightforward and
may be found in [Ahlfors, 1981, p.79].

Theorem 1.4.1 If I is a discrete group preserving B and ¢ € B then I{a) can
accumulate only at S.

If we select a,b0 €EB and a sequence of Moebius transforms {v,} with
v, (@) — E €S then, since Moebius transforms preserve hyperbolic distance, it is
easy to see that +,(b) — £ also. In view of this remark the following deflnition
makes sense.

A point £€ S is a limit point for the discrete group I'if for one, and hence
every, point £ €B the orbit I{z) accumulates at €. The set of limit points is
denoted by A(I"), or simply A. The next chapter is devoted to a detailed
discussion of A and some interesting subsets. For the time being we merely
remark that A is a closed subset of § and its complement is the set of
ordinary points. The group T is said to be of the first kind if A =$ and of
the second kind otherwise.

A Fuchsian group is a discrete subgroup of M(B) in dimension n = 2 and
a Kleinian group is a discrete subgroup of M(B) in dimension = =3. This is
the modern terminology — in much classical work the word "Kleinian" was used
for a discrete group of Moebius transforms acting on the complex plane with a
non-empty ordinary set. Poincaré showed how to extend the action of such a
group to the upper half space in R® (with the complex plane viewed as the plane
z3 = 0) and it becomes (in our terminology) a Kleinian group of the second kind
— see [Poincaré, 1883].

If T is a discrete subgroup of M(B) then two points a,7(a), YET are called
equivalent, and we can pass to the quotient B /T by identification of equivalent
points. This quotient is certainly a Hausdorff space, and in dimensions 2 and 3 it
is known to be a manifold. In higher dimensions one encounters real difficulty
with the flxed points, and the more general notions of V-manifold (Satake) and
orbifold (Thurston) must be used. The reader is referred to [Satake, 1956] and
[Davis and Morgan, 1984 p.183] for full details. For our purposes, we shall simply
refer to B /T as the quotient space.

A convenient way to view the quotient space B /I is via the notion of a
fundamental region. The basic idea is to select a representative from each
orbit and to do this in such a way that the resulting set has nice geometric
properties. A detailed account of such constructions, for Fuchsian groups, is to be
found in [Beardon, 1983, Chapter 9]. For our purposes we restrict attention to
the most well known such construction. If ¢ €EB and I is a discrete group



section 1.4 17

preserving B then set
D, = interior {z €B : p(z,a) < p(z,7(a)) VET}.

The region D, is convex in the hyperbolic sense (being the intersection of half-
spaces), it is open, and any point z of B is equivalent to some point of its closure.
The stabilizer of a is a flnite subgroup of I, and if D, is intersected with a
fundamental domain for this stabilizer, then a fundamental domain for T results.
In particular, if ¢ is fixed only by the identity element of I' then D, is a
fundamental domain for I' — from each orbit we have selected the point closest to
a. In this case D, is called the Dirichlet region centered at a. The boundary of
D, is a countable collection of (n—1)-dimensional faces which occur in I-
equivalent pairs. Further, the face pairing transforms are a set of generators for
the group.

We shall be concerned with the notion of geometrically finite groups. In
dimensions 2 and 3 the standard deflnition of geometrical finiteness is that some
Dirichlet region D, have flnitely many faces. In [Marden, 1974] it is shown that
in this case every Dirichlet region, indeed every convex fundamental polyhedron,
has flnitely many faces. Geometrical flniteness in dimensions 2 and 3 clearly
implies that the group is flnitely generated. The converse is true in dimension 2,
[Beardon, 1983, p.254], and is false in dimension 3 [Greenberg, 1966]. In higher
dimensions there are problems with the deflnition — examples are known of
discrete groups in dimension 4 for which some convex polyhedron has flnitely
many faces and some other does not. The reader is referred to |[Apanasov, 1982],
[Apanasov, 1983], and to [Bowditch, 1988] for an account of such phenomena.
For the present we simply adopt the deflnition that a group I is
geometrically finite if some convex fundamental polyhedron (not necessarily a
Dirichlet domain) has flnitely many faces. We will return to this topic at the end
of Chapter 2.

If A is the limit set of the group I' we may form the convex hull of A —
C(A) in B. The set C(A) is invariant under I' and we say that I is
convex co—compact if the action of I' on the convex hull C(A) has a compact
fundamental region in B. As an example, geometrically flnite Fuchsian groups
without parabolic elements are convex co-compact.

From the differential dp deflned in B we may construct a hyperbolic volume
element as follows

iV = 2" dz,dz,...dz,
a=lzP)"

and use this to measure the volume of a Dirichlet region D,. The discrete group
I is said to be of finite volume if for one (and hence every) non-flxed point
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a €B, V(D,) < oo. As examples, one can consider any group with D, compact
in B or a geometrically flnite Fuchsian group of the first kind.

1.5 The Orbital Counting Function

We are interested in the distribution of orbits in the ball and deflne an orbital
counting function as follows. If z,y €B and r is positive set

N(r,z,y) = card {YET : p(zA(y)) < r} (1.5.1)

The next result generalizes an old estimate, usually attributed to Tsuji, but in
fact first established by Hopf [Hopf, 1936] which states that for a Fuchsian group
there is a constant A such that N(r,z,y) < Ae".

Theorem 1.5.1  Let I' be a discrete group acting in B. There is a constant A
depending on I, and y such that for any z €B
N(r,z,y) < Ae™(*-),

Proof. We start by calculating the hyperbolic volume of a ball of hyperbolic
radius s. We may suppose that the ball is centered at the origin. If |z| =t then

p(0,z) = log i +i and we have
|z | = tanh [0(0,2)/2]. (1.5.2)
Using the Euclidean volume element computed in section 1.1 we see that
tanh a /2 -
on Iz In 1
Vi{iz : p(z,0) < s} = W LA L2 s— ]
{ ( ’) } fo (l—|z|2)"

where W is the w-measure of the unit sphere S. From (1.5.2) and the standard
identities for hyperbolic functions we obtain

V{iz:p(z0) < s} =W L‘sinh"'l(t)dt. (1.5.3)

Let A be a ball centered at y of hyperbolic radius ¢ > 0 so small that no two I-
images of A overlap — note that ¢ is a function of the minimal separation of the
orbit points of y. Since the images of A do not overlap we have

+
V(A N(r,z,y) < V{z:p(z,2) < r +e}=W L' ‘ sinh™~1(¢)dt
from (1.5.3). The integral is clearly bounded above by

+ €
2"1_1 L' e(n=1)t 4p

from which we obtain
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fn—1)
N(r,z,y) < S A —
2" (n—1)V(4)
and this is the required result. O

In the case that I' is of flnite volume we have an inequality in the opposite
direction.

Theorem 1.6.2  Let I' be a discrete group acting in B. If I'is of flnite volume
then for z,y € B there is a constant C depending on r,y, and on I' and a positive
real ro such that if r > rg

N(r,z,y) > C elr~r,

Proof. We prove the result with z = 0. Consider the ball A(0,r) centered at the
origin and of hyperbolic radius r. Set D(r)=DMA(0,r) where D is the
Dirichlet region centered at the origin. If the origin is flxed by some (necessarily
elliptic) element then the Dirichlet construction yields a cover of finite volume and
the argument which follows goes through with minor modiflcations. Since
V(D) < oo, for € > 0 we may find rq such that for r 2> rg

V(D — D(rg)) < e (1.5.4)
Now for r > rq
V(AOr) = VIAONATD(ro))]l + VIAO,ATD = Diry))] (1.5.5)

and the second term on the right is equal to

ID _ D('O)N(r 0,9)dV(y).

However, from theorem 1.5.1 and inequality (1.5.4), this integral does not exceed
Aee(*=Vr Using this estimate, and the formula (1.5.3) for the volume of a
hyperbolic ball, we see from (1.5.5) that

VA, )N(D(re)] > L'sinh""(t)dt — Aee(rVr > 4 eln-0)r

for some positive A; — provided € was chosen small enough. We assume,
without loss of generality, that y belongs to D(ry). The I-images of D(rg) are
disjoint and if one of them meets A(O,r) then the corresponding image of y must
lie in A(O,r + 2r¢) and so we have

V(D(rg)) N(r +2r3,0,y) > A le("'l)',

From which we obtain
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N(r0,y) > elr=1)r

1
V(D) lec(n—l)

as required. O

The orbital counting function is a notion of central importance in the theory
of discrete groups. It has been studied extensively and deep results have been
obtained. We will be considering this function in greater detail in later chapters
and will derive, for example, some asymptotic results relating it to the so called
“eritical exponent" of the group and to the Hausdorff dimension of the limit set.
The two results given in this section are the minimum necessary to study the
convergence questions of the next section and the following chapter.

1.6 Convergence Questions

We are interested in the rate at which orbit tends to S. The first observation is
that any two orbits I{a), I'(5) are comparable in the sense that the ratios

1-he)l ,
T=ho) ~eTl

lie between finite limits. To see this, note that p(0,v5) < p(0,7a) + p(a,b) and so

1+ h(s)| <log

log T=Fo)| -}% + p(a,b)
from which
1= Ka)| < 2e7)1 = h(b)])
for all ~.

A good way to study the rate at which orbits tend to S is to consider the
convergence of the series

¥ @ =ha)lr
n€r

for various @ > 0. From our remarks above, the convergence or otherwise of this
series is independent of ¢ € B. Thus in general we will consider the series

> (1 - ho)~ (1.6.1)

~€T

In many ways it is more natural to look instead at the series

T emer00), (1.6.2)
~€T

and in view of the fact that p(0,7(0)) = log

1+ o)l it is immediate that
1 - ho)l
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(1.6.1) and (1.6.2) converge or diverge together.

For a > n—1, the series always converges.

Theorem 1.8.1  Let I be a discrete group preserving B and o > n—1 then

S e~2#070) < oo .
~€T

Proof. We consider the partial sum

R R
T emr0(0) = L e **dN(t,00) = N(R,0,0) e~*F +aL N(t,0,0)e~*tdt
a(o.’!l(g)r;k

and the result follows immediately from theorem 1.5.1 O
We next deflne the eritical exponent of a discrete group. Set

) =inf{a: 3 e~2A070) < oo},
~€T
This is a construct of fundamental importance in our later work (see Chapter 3).
We note from theorem 1.6.1 that, for any discrete group I', 6 < n—1. The group
I is said to be of convergence or divergence type according as the series

by e —4T)p(0,7(0)) (1.6.3)
7€T
converges or diverges. We remark that this deflnition is different from the usual
one. It is usual to say that I' is of convergence type if the series

zre—(»—l)p(o.v(o)) (1.6.4)
~€

converges and of divergence type otherwise.

The convergence of the series (1.6.4) is, as we shall see, necessary and
sufficient for the existence of a Green’s function on the quotient space B /I and it
is for this reason that the convergence or otherwise of the series (1.6.4) is viewed
as an important dichotomy. For our purposes, the convergence or otherwise of
the series (1.6.3) is an even more important dichotomy and pervades the entire
measure construction given in Chapter 3. It is for this reason that we adopt the
non-standard notation. To reiterate, convergence or divergence type will refer to
the series (1.6.3). If the series (1.6.4) converges we will say "T" converges at the
exponent n—1"

Theorem 1.8.2  Let I be a discrete group preserving B. If I is of the second
kind then I’ converges at the exponent n—1.



22 Chapter 1 Preliminaries

Proof. The limit set is a closed subset of § and so there is a subset C of
ordinary points of S which is the intersection of S and a ball in R". Since the
closure of C is compact, it follows that C can only meet finitely many of its I-
images and consequently

3 w(¥(C)) < oo

~€T
which implies
Y [b @) dw(z) < oo (1.8.5)
v€T
Using theorem 1.3.4 and the fact that |y(0)] = y~!(0)] we see that (1.6.5) implies
¥ [0 = OBz = v©)" 4" Ndu(z) < oo (1.6.6)

~€T
but, since |z — 471(0)] < 2 for all YET and z € C, the convergence of the series

¥ (1 = ho)h*~

7€T
follows from (1.6.6) above. O

Theorem 1.6.3 Let T be a discrete group preserving B. If T' is of flnite
volume then §I) = n—1 and T is of divergence type.

Proof. As in the proof of theorem 1.6.1 consider the partial sum

5 esnm0on0) = [Fo-a-0tan(z,0,0
o < n

R
= N(R,00) e=""DR 4 (n—1)[ N(t,00)e~(""Vas

which, from theorem 1.5.2 , clearly diverges as R — oo. This, with theorem
1.6.1, completes the proof. O



CHAPTER 2

The Limit Set

2.1 Introduction

Suppose that I' is a discrete group of Moebius transformations preserving B.
Given z € B the orbit of z under T, written I{z), is deflned by

Nz) = {(z) : v€T}

Discreteness implies that such an orbit can accumulate only at S (theorem 1.4.1).
The subset A(T') of S at which orbits accumulate is the limit set of I. Our aim in
this chapter is to study various classes of limit points which arise in a natural
way in the study of ergodic properties. This classiflcation is achieved by studying
the rate at which orbits approach the limit point. In order to unify our treatment
and, at a later stage, to make various analogies and connections clearer it will
help at this point to make a deflnition.

For a discrete group I' enumerated by I' = {v, : n =0,1,2,...} we deflne the
following subset of the unit sphere S

o0
L{a:k,o)= My |J I(vs(a):k,0). (2.1.1)
Nael n>N

Where I(a:k,a) is the set deflned by (1.2.4). Thus L(a:k,a) comprises those
points of S which lie in inflnitely many of the neighborhoods I(7(a ):k,0), v E€T.
Since, on any sequence {V,, }, hm(a )| = 1 we see that, for any k,a > 0, L(a:k,)
comprises limit points. Note further that the size of £ and o regulate the rate at
which the orbit of ¢ approaches £€L (a:k,0).

Our next result is reminiscent of the Borel Cantelli lemma from probability
theory.
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Theorem 2.1.1  Let I' be a discrete group acting in B for which the series
T (1 = ha)lfrte
7€T
converges. Then the set | J L(a:k,a) has zero w - measure as a subset of S.
k>0
Proof. Fix £ > 0. From lemma 1.1.1 we observe that

w(I(r(a)k,a) < -t

where p = arccos (1 — k%1 — h(a)|)**/2). Thus for h(a)| close enough to 1 we
will have p < 2k(1 — h(a)|)®, and so, except for finitely many y€T, we will
have

w(lI(x(a)k,0)) S 4 (1 — ha)]r-De (2.1.2)

where A is a constant depending only upon k and the dimension n. If
w(L(a:k,0)) =€ > 0 then inflnitely many of the sets I(+(a):k,a) would have w-
measure at least € and we deduce from (2.1.2) that

¥ (1= ha)f*= = oo.
~€T

This contradiction shows that w(L(a:k,0)) =0 for any k£ > 0. Now from the
deflnition (1.2.4) we see that if k' > k > 0 then I(a:k,a) CI(a:k',a) and so
the set | J L(a:k,a) may be written as a countable union of sets of zero w-

~€T
measure and this completes the proof of the theorem. O
Following ideas of Sprindzuk [Sprindzuk, 1979, p.21] we will prove
Theorem 2.1.2  Let I' be a discrete group acting in B. Fix a > 0 and &,,k,
satisfying k, > k, > O then, for any ¢ €B,
w(L(a:k,,0)) = w(L(a:ky,0)).

Proof. Note that for any Y€, I(n(a)ikee) C I(7(a)k;,0). I we write
I'={y, : m =0,1,2,...} then, as m — oo,

k-1
W (I}t 10) ~ T (1 = by () -1

from lemma 1.1.1. It follows that there exists é > 0 such that, for m large
enough,
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w(I(vm(a):k2,2))
w(I(’Ym(a):kha))

> b (2.1.3)
Now deflne
7= 0 UIOm(@)kye) aad B = | I(vm(a)kze)
=]l m= m =

and set D; = J — B;. To prove the theorem it suffices to show that every D, is
of w-measure zero. If this is not the case then D, contains a point of metric
density — say €. Since £ €J then £ €I(V,(a):k, ) for inflnitely many m and,
for such m,

w[Dp M) I(m(a ):ky,0)] ~ w(I(Ypy(a):ky,0)) as m — oo (2.1.4)
since w(I(vy,(a):k,,0)) =0 as m — oo. On the other hand, the sets D, and
I(vp(a):kg,a) do not intersect if m >, and hence D, () I(Vp(a):k,@) and
I(, (a):ky,0) are non-intersecting subsets of I(7,, (a ):k;,0). Therefore

wiI(Vm(a):k )] 2 w{I(Vm(a):kys@)) + w[Dy (Y (Y (a):k1,0))
2 Sw[l(vn(a)k1,)) + [P (I (Ym(a):k1,0)]

— by (2.1.3). It follows that w[Dg, (¥ (a)ky,0)] < (1 = 6) w{I(Vy(a):ky,0)]
which contradicts (2.1.4). This completes the proof of the theorem. O

The following corollary is immediate.

Corollary 2.1.3  Let I be a discrete group acting in B. Fix @ > 0 and ¢ €B
then

w( |Y L(a:k,a)) = w( My L(a:k,a)).
k>0 k>0

Our analysis of the limit set will be based upon the rate at which orbits approach
the point in question. We will start by considering the most rapid rate possible
and then successively weaken the required rate of approach.

2.2 The Line Transitive Set

Given a discrete group I acting in B and a point £ € A(I") then, for any y €T
and any ¢ € B we clearly have 1 — h(a)] < |€ —~(a)|. In terms of orbital
approach, the best we can hope for is that, on a sequence {y,} C T,

IE_’Yn(a)I —_ 1 as 1 — oo
1- l)n(a)l .
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We could even ask that for any a €B such a sequence {7, } exist. In fact we start
by asking even more than this.

Definition. The point £ € A(I") is said to be a line transitive point for I' if for
every pair a,b€B there exists a sequence {7, } CT such that

ke 1 | R [ et 1 L0
n—-aol—”n(a)l n—-aol—[;'"(b)l

Suppose £ is line transitive and o is a geodesic ending at &£ (with n the other end
point of o) we have

2hn(a) - Elhn(a) - 77|
1€ = nl(1 = ha(a)P)

(from theorem 1.2.1) and so, on the sequence {v, }, (7, (a),0) — 0 and, similarly,
(7, (8),0) = 0. By the invariance of the hyperbolic metric we have

pla 7o) =0 and p(b,r7X(0)) =0

as n — oo. Thus, for any pair of points a,b €B there is a sequence of images of
the geodesic o coming arbitrarily close to both points. We have proved the
following result.

cosh p(v,(a),0) =

Theorem 2.2.1 If the point £EA(I) is a line transitive point and o is an
arbitrary geodesic ending at € then the I-images of o are dense in the set of all
geodesics.

This result explains the name “line transitive" - the set of line transitive
points is denoted by T;. The class T} was the first special class of limit points to
be isolated. Artin [Artin, 1924] characterized T for the modular group acting in
the upper half of the complex plane — he showed that T; comprises those real
numbers whose continued fraction representation contains each flnite sequence of
integers. Myrberg [Myrberg, 1931] later showed that for finitely generated
Fuchsian groups of the first kind, the set T; has full measure on the circle. Other
early work on the set T, (in dimension 2) is to be found in: [Koebe, 1930}, [Lobell,
1929], [Myrberg, 1931], and [Shimada, 1960]. The papers of Koebe and Lobell
contain a proof of the following result. Since the original papers are hard to find,
a proof is included for the sake of completeness.

Theorem 2.2.2 If I'is of the first kind then T} % (7.
Proof. Since I' is of the first kind then A(I') =S and we know that the set of

hyperbolic flxed point pairs is dense in $X S [Gottschalk and Hedlund, 1955,
p-122]. Following Hedlund’s methods [Gottschalk and Hedlund, 1955, p.123] it
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may be shown that if A,B,C,D are any four open neighborhoods in § then there
exists 7YET with y(A)C # J and ¥(B)\D # .

Now for integer n we may partition S into n regions of equal w - measure,
say E,, ...,E,. Choose A,B open neighborhoods in S and select E;,E;. By
the continuity of Moebius transforms we may find open sub-neighborhoods, say
A" B', of A,B and a Moebius vi,;j €T such that if a€A’, bEB' then
Y j(a) € E;, 7; ;(b) € E;. This procedure may be repeated for all pairs E;, E;
and we have two open neighborhoods — say A,B of S and a collection v, ; of
Moebius transforms in I' such that for any a€A,bEB , ~;;(a) EE;
v ;(b) € E;.

We repeat this procedure with the integer n+1, starting with the
neighborhoods A ,B just obtained, and find ultimately that there exists a geodesic
whose I-images are dense in the set of all geodesics. One end point of this
geodesic must be in T} and the theorem is proved. O

2.3 The Point Transitive Set

If we weaken the requirement for a line transitive point and require only that for
every a €B a sequence of I-images of a approach the limit point almost radially,
then the limit point is said to be point transitive.

Definition. The point EEA(I) is said to be a point transitive point for I if for
every a €B there exists a sequence {y, } CT such that

lim IE_’Yn(a)I =1
n—o0 1— l;"(a)l

The argument used in section 2.2 easily yields the following result which explains
the name "point transitive".

Theorem 2.3.1 If the point EEA(I) is a point transitive point and o is an
arbitrary geodesic ending at £ then the I-images of o are dense in B.

The set of point transitive points will be denoted T, and clearly T;CT, for any
discrete group I. In [Sheingorn, 1980a] it is shown that in general these sets are
not equal.

Theorem 2.3.2  (Sheingorn) If T is the modular group acting in the upper half
of the complex plane then T, # T;.

Whereas, for groups of the first kind, the set T; is always nonempty, for
groups of the second kind, the set T, is always empty.
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Theorem 2.3.3  If I'is of the second kind then T, = (J.

Proof. Let n€S be an ordinary point for I. Since the ordinary set is open,
there exists a neighborhood N of 7 in § which comprises ordinary points. It is
geometrically evident that a point ¢ of B may be chosen so close to 7 that any
geodesic passing through a has one end point in N. Such a geodesic clearly
cannot be approximated by images of any other geodesic since this would make
the end point in N a limit point for the group. O

The class T, has been used extensively in connection with number theory
and the boundary behavior of automorphic functions and forms — see, for
example: [Lehner, 1964 Chapter 10}, [Nicholls, 1981}, and [Sheingorn, 1980b].

2.4 The Conical Limit Set

We next weaken the requirement that orbits approach a limit point almost
radially and require instead that they approach within a cone. In view of theorem
1.2.4 we see that the property given in the following deflnition is equivalent to
conical approach.

Definition. The point £ € A(T') is said to be a conical limit point for I if for every

— Ya(a
a€EB there exists a sequence {v,} CT on which the sequence -Ilf—lz"T())Il-
—h.(a

remains bounded.

It is immediate from the deflnition that the conical limit set — denoted by
C — is a subset of T,. The following result is an immediate consequence of
theorem 1.2.4.

Theorem 2.4.1 The point £ES is a conical limit point for I' if and only if
there is a geodesic o ending at £ such that for any point a €B there are inflnitely
many I-images of o within a bounded hyperbolic distance of a.

Corollary 2.4.2 If € is fixed by a loxodromic element of T then £ is a conical
limit point.

It is well known that the closure of the set of group images of the axis of a
loxodromic element in the group comprises the set of images of the axis and so,
from theorem 2.3.1, a loxodromic flxed point is not in T,. Thus T, — C is not
empty. However, this difference is fairly small.

Theorem 2.4.3  If T'is a discrete group then w(C) = w(T,).

Proof. Recalling the set L(z:k,o) defined in (2.1.1) and using theorem 1.2.4 we



section 2.4 29

see that if {z, } is a countable dense subset of B we have

T, = N N L(z,:k1) and C = M |YL(za:k,1)
n>1k>0 n>1k>0

and so w(7,) = w(C) from corollary 2.1.3. O
Using the fact that

C =M YUL(:kl) = YL(z:k,1)
2€B k>0 k>0

for any z€B, the following result is a corollary of theorem 2.1.1.

Theorem 2.4.4  Let I be a discrete group acting in B for which the series

3 (1 = hla))~?

~er
converges. Then w(C) =0.

Conical limit points were introduced (in dimension 2) by Hedlund [Hedlund,
1936] and were used by him in his study of horocyclic transitive points. The
conical limit set has been studied over the years by a number of authors.
Particular mention should be made of : [Lehner, 1964, Chapter 10] where the
connection with Diophantine approximation is made; [Beardon and Maskit, 1974]
for the characterization (2) of theorem 1.2.4 and the generalization of Hedlund’s
results to the three dimensional case; and [Agard, 1983] and [Tukia, 1985] for
applications in the development of general rigidity theorems.

We next characterize the conical limit set in terms of shadows — see section
1.2 for the deflnition. Suppose {a,} is a sequence of points in B such that
la,| =1 as n — 00 and § > 0 is chosen. From (1.2.1) it follows that £€S
belongs to the shadows b(0:4,,0), n =1,2,... if and only if there is a constant
k > 0 such that for n large enough |€ — a,| < k (1 — |a,|). This implies, by
theorem 1.2.4, that the sequence {a, } converges to £ in a cone. We have proved
the following.

Theorem 2.4.5 Let I be a discrete group acting in B and £E€S. Then £ is a
conical limit point for I' if and only if for some ¢ €B and § > 0 £ belongs to
inflnitely many shadows b(0:v(a),6) : yET.

Of critical importance for the ergodic theory is the following theorem. It
follows from a deep ergodic result [Sullivan, 1981 p.483], however, we prefer to
give an elementary proof. This proof is taken directly from [Ahlfors, 1981] and is
attributed by him to Thurston.
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Theorem 2.4.6 Let I" be a discrete group acting in B for which the set of
conical limit points has zero w-measure, Then the series

¥ @ = he)h
~€T

converges for all ¢ €B.

Proof. If the group I' is enumerated by l"={'1p :p =0,1,2,...} we write
z, =7, %(0) and note from theorem 1.2.4 that

[= =]
C=UJ N U b0zg,9.
§>0N=1p 2N
From this it is immediate that if w(C) = 0 then, for every § > 0,

N].Extlco w( ) LéJNb(O:z, ,8)=0. (2.4.1)

For the group I to converge at exponent n—1 it is necessary and sufficient, by
theorem 1.2.2, that

i’ilw(b(mx,,b)) < oo (2.4.2)
=

It is evident that (2.4.1) implies (2.4.2) provided the shadows b(0:z,,6) do not
overlap too much. The idea of the proof is to show that this is the case.

As a first simplification we show that many of the shadows can be
discarded. For this purpose choose a number A > 0, which will ultimately be
large, and use it to deflne a subsequence {p, } as follows:

o choose py =0

e Suppose pg,...,p; have been chosen so that the distances p(zp',zp!) are all
greater than A. Then choose p, ., to be the smallest p such that
o(2,,53,,,) > A for i =0,..,k.

This choice can always be made and we see that

p(zp,,75,) > A for all h £k
and for every p there exists a p; such that
P(.’L'p 9zp,) S A.

Let N be the number of z, with p(z,,0) <A and note that this is also the
number of z, with p(z,,7,) < A. If this is the case then
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l_lzpl

<P
l—lzml

where P depends only on A. If
S -1
kz (l - Ing I)" < oo
-1

it follows that

©0

2 (1 - Izp I)n—l < oo

k=1
Thus it is sufficient to prove (2.4.2) on the subsequence, and we renumber the
subsequence as {z, : p =0,1,2,...}.

Choose A so large that the balls A(z,,) do not overlap. Imagine an
observer placed at the origin and we speak of total or partial eclipses when two
shadows overlap. We next divide the A(z,,6) into classes depending on the
number of times they are eclipsed.

The class I consists only of A(0,6). We remove this ball and define I, as
the class of all A(g,,6) that are now completely visible from the origin. Next
remove all balls of I, and define I, as the class of those A(z,,6) which are now
completely visible. By induction, the class I, is defined for n = 0,1,2,.... Clearly
each ball A(z,,6) belongs to a class I, and the shadows of the balls in I, are
disjoint.

The object of the proof is to show that for some N, 0 < A < 1,

S wOz,9) < 3% w(b©s,,)
Az, ,8) € In Az, ) € In

which clearly implies (2.4.2).

Every A(z,,0) € I, is either partially or totally eclipsed by some
A(z,,8) € I, and writing r,, r, for the Euclidean radii of A(z,,5), A(z,,0) we
need an upper bound for the ratio r, /r,. We refer to figure 2.4.1 in which z,
and r, are at a non-Euclidean distance < & from the same radius. Let bp s by be
the non-Euclidean orthogonal projections of z,, 7, onto this radius. Then

A < plz,,3;) < p(b,,b,) +26
= p(0,5,) — p(0,b;) + 26

< p(0,z,) — p(0,z,) + 46

or
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Figure 2.4.1
0,z,) > p(0,z;) + A — 46
and

l+|zp| 1+|zq|eA_46

=Tl ~ T=Ts,]

which implies
1—|z,| < 2e74+4%(1 — |z,]).
The formula for the Euclidean radius r of the ball A(z,d) is
(1 — |z|*) tanh §/2
1 — |z|*tanh? §/2
(see [Ahlfors, 1981 p.86]) and thus we find
1, < 4e74F 4 cosh?(8/2) (2.4.3)

r =

which can be made arbitrarily small by choosing A large enough.

We consider now all the A(z,,6)€1,,, which are partially eclipsed by
Az, ,6)€I,. The shadows 5(0:z,,) are disjoint and lie asymptotically within a
distance r, from the rim of 5(0:z,,6). Their total area is therefore asymptotically
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at most the difference in areas of two spherical caps of radii 7, + r, and r, — 7.
This quantity is seen from lemma 1.1.1 to be

M [ (sin 6)~2 d0 — M [ (sin 6"~ a0

where  p) =arccos [l = (r, + 1, /2], py=arccos[l —(r, —1,)?/2] and
asymptotically this is
M(r, +r,)"™"  M(rg =1, M .. [
—_— - 1 n—-1 _ 1 — n—l]
n =1 n =1 n—1"71 S (1 =1p/r)

~ 2Mrp~! r,/rq]

~ K w(b(0:z,,8) 1, /1,

for some constant K depending only on the dimension. In view of (2.4.3) we can
choose A so that for sufficiently large m, the total area of the shadows 5(0:z,,6)
of the balls A(z,,6) €1, that are partially, but not totally, eclipsed by some
Az, ,6) € I, will be less than

1
3 Y w(b(0:z,0) .
Az, e,
We pass now to consider those balls in I,,,, which are totally eclipsed by some
member of I,. We need an auxiliary lemma.

Lemma 2.4.7  If {€5(0:z,,6) (M) b(0:3,,8) with A(z,,6) €I, and A(g,,8) € Iy 4,
then the geodesic z, £ intersects the ball A(z,,26).

Proof. Map the unit ball conformally onto the upper half space so that the
origin goes to the point e, =(0,0,...,1) and £ goes to infinity. Figure 2.4.2
illustrates the situation. We keep the names of the points z, z,. The geodesic 0§
becomes a vertical line through e, and z,§ a vertical line through z, whose
intersection with R"~! we denote by ¢. Let b,,b, be the closest points to z,,z,
on the vertical through e, and let ¢, be the closest point to 5, on the vertical

through ¢. The non-Euclidean distances are computed as follows

"2 d@

p(zy,0,) = j; perw i log cot (¢/2)
"2 49

p(byscp) = Lx P i log cot (¥/2).

But
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Figure 2.4.2

lel _ el
Tel ~

le| | I
costp = < =
so that ¥ > ¢ and
p(bp’cp) < p(zq’bq) _<_. 6
It follows that
p(zp’cp) p(zp’bp)'l"p(bp’cp) < 26
and the lemma is proved. O

On the left in figure 2.4.3 we have a A(z,,6) and some totally eclipsed
A(z,,6). On the right we have applied the map -, The image -y, (b(0:, »+9)) is not
the same as 5(0:v,(z, ),6) but the lemma tells us that ~,(6(0:3,,6)) is contalned in
b(0:v,(z,),26). We may use condition (2.4.1) with é replaced by 26 and so, for m
big enough,

3 w(vy(6(0:3,,8)) < 3 w(b(0:74(3,)28) < € (2.4.4)

where the sum is taken over all z, defining balls in I, completely eclipsed by a
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xq-(l;(o. XPJS))

Figure 2.4.3

fixed ball of center z, in I,. On the other hand, if A increases to oo then ~,(0)
approaches the boundary while the area of the shadow of A(0,§) viewed from
7, (0) decreases to a positive limit 0. In other words,

w(Y,(6(0:2,,8))) > . (2.4.5)
But

w(v,(b(0:z,,8)) > [m'm hq'(z)|]"_l w(b(0:z,,8)) (2.4.6)
w(7,(6(0:2,,8) < [max hq'(z)|]"_lw(b(0:zq,b)) (2.4.7)

where the maximum and minimum refer to z€b(0:z,,6). Thus from (2.4.4)
through (2.4.7) we see that
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w(blone w((0:3,,8) w(7,(5(0:,,)
2”) (b(o- p’b)) ” w(’yq(b(O:zp ,6)))

1
1 3 w(V,(b(0:2,,8))
[min hq’(‘”)l] ' ) ! P
w (74 (b(0:2,8))) 1 Yw((b(0:,,8)))

) o
w(b(0:2,9)) [m'm hq'(ac)|]"_1 w(7,(6(0:2,,8))) v (b (0:2,,9)

(mex by @)
< [min |'7q'(.1¢)|]"_1

We choose € so small that the factor on the right is less than 1/3.

_QE,T w(b(0:z,,0)) .

Thus we conclude that the shadows of the totally eclipsed A(g,,6) in Iy 4y
make up at most 1/3 of the shadows of the A(z,,6) in I,. With our previous
estimate for the partially eclipsed balls we have

S w0 < 2% w0,

A(zy S)Elmn A(z, )€l

for all sufficiently large m. This in turn proves that

i w(b(0:2,,8) < oo

p=0
which is (2.4.2) and the proof of the theorem is complete. O

For certain groups we may specify completely the nature of the conical limit
set.

Theorem 2.4.8 Let I be a discrete group for which the closure of the Dirichlet
region D is contained in B, then every point of S is a conical limit point.

Proof. There exists € > 0 such that D is contained in {z : |z| < 1 —€¢}. Now
choose £€€S and let o denote the radius to §& The radius o clearly meets
infinitely many I-images of D and is thus a bounded hyperbolic distance from
infinitely many I-~images of 0. From theorem 1.2.4 we see that infinitely many I-
images of 0 approach § within a cone. Thus £ is a conical limit point. O

Theorem 2.4.9 If ' is a convex co-compact discrete group preserving B then
every limit point of I is a conical limit point.
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Proof. Denote by C(A) the convex hull in B of the limit set A. Select &, a limit
point for I" and u, a point of C(A). The geodesic ray o from « to £ lies entirely
in C(A). But C(A) has a compact fundamental region, say D and now we may
argue exactly as in the proof of the previous result. O

In general, a conical limit point cannot appear on the boundary of a
Dirichlet region.

Theorem 2.4.10  Let I' be a discrete group preserving the unit ball B. If D
denotes the Dirichlet region centered at the origin and if £ €3D M)S then & is not
a conical limit point.

Proof. If we suppose that § €AD then for any ¢ , 0<c <1, c£€D and so the
int ¢& is closer to 0 than to any I-image of 0. Thus defining the ball

B, ={w : p(w,c§) < p(c&0)}

we see that B, contains no I-images of 0. It follows that
B, o)= &.
CG%I) ¢ n

However, the union p B, is easily seen to be a ball of radius 1/2 centered at
c€(0,1)

£/2 and this ball contains cones at § of arbitrarily wide opening. Thus no such
cone contains infinitely many images of the origin and the point & is not a conical
limit point. O

2.5 The Horospherical Limit Set
Analogous to the notion of orbits approaching the boundary in a conical region is

that of an orbit approaching the boundary in a horosphere. We first give the
analytic definition.

Definition. Let I' be a discrete group acting in B. A point £€S is a
horospherical limit point for I if for every a €B there exists a sequence {y, }CT
such that

If_qn(a)lz — 0 as 1 = 00
l_lin(a)l )

We see from theorem 1.2.5 that at a horospherical limit point &, the orbit of every
point of B enters every horoball at §.

The horospherical limit set is denoted by H and the following result is an
immediate consequence of the definition.
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Theorem 2.5.1  Let I be a discrete group acting in B then

H = (M L(a:k,1/2)
k>0

In terms of derivatives, we note from theorem 1.3.4 that §E€H if and only if
{h'(&)|: vE€T} is an unbounded set of reals.

We next consider image horospheres.

Lemma 2.5.2 Suppose €S and A is a horosphere at £ of Euclidean radius
k. If 4 is a Moebius transform preserving B then (A4 ) is a horosphere at 4(§) of
Euclidean radius

kb’ @l
T—k+ kD" @I

Proof. A contains the point (1 —2k)§ and so ~(A) contains the point
A({(1 — 2k)€). If we let w be the Euclidean radius of 4(4 ) then, by theorem 1.2.5
we need to solve the equation

(1 =h@a =-20P) M —26)) =A™ = (1 —w)/w.  (25.1)

The second term on the left hand side is found to be (using theorem 1.3.4)

b (1 = 260917 b (©)17! /44

and, again using theorem 1.3.4, we find

b (@ - 26)§)" =

1—(1—2k)?
1-h(t —26)9F

Thus equation (2.5.1) becomes
1—(1—2kfF _1-—w
4%k @) w

solving for w,

N (3]
T=Fk +kh' (@

w

as required. O

It follows from lemma 2.5.2 that any horosphere at a horospherical limit
point has images of radius arbitrarily close to one. If the group is of the first kind
then an argument of Hedlund [Hedlund, 1936 p.537] may be applied to show that
images of any such horosphere approximate any horosphere and again using
lemma 2.5.2 we obtain
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Theorem 2.5.3 Let I be a discrete group acting in B. If ' is of the first kind
then £ € H if and only if the set {hy’ (§)]: ¥ €T} is dense in the positive reals.

The notion of a horosphere having images approximating every horosphere
is analogous to the notion of a line transitive point and Hedlund thus described
this situation (in dimension 2) by saying that the point at infinity of the
horosphere was a "horocyclic transitive point " [Hedlund, 1936]. It was his work
on the characterization of such points which led him to consider what we now call
conical limit points. His results were later extended to the three dimensional case
— see [Tuller, 1938].

In terms of the group action on S, Sullivan has shown that the
horospherical limit set H is the conservative piece. We will consider these ideas
further in Chapter 6. For details on this and related topies see: [Sullivan, 1981],
[Ahlfors, 1981], and [Nicholls, 1983a].

2.6 The Dirichlet Set

Our last class of boundary points is defined as follows.

Definition. For a discrete group I' the point £ €S is a Dirichlet point if for

every a €B the set
b(a) — €17 |
[1— @r * 7€

The set of Dirichlet points is denoted by D and in order to understand the
name we need two lemmas.

has an attained minimum.

Lemma 2.8.1 Let o be the hyperbolic ray connecting ¢ €EB and £ E€S. Then
the horoball A at £ through a may be written

A= {z:0(z,9) < pla,y)}

y €c

Proof. We need only observe that, for any y €o, the sphere
{z : p(z,y) = p(a,y)} is internally tangent to the horosphere 94 at a. DO

Lemma 2.6.2 Let I' be a discrete group acting in B and §€S. If ¢ €B then
£ €D, if and only if the horoball at £ through a contains no I[-image of a.

Proof. Suppose £ €D, then by convexity the geodesic ray o joining a to § is in
D,. It follows that for any y €o the ball {z : p(z,y) < p(a,y)} contains no I
images of ¢ and the conclusion follows from lemma 2.6.1. The proof in the
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reverse direction is entirely similar. O

From theorem 1.2.5 we see that £ €D if and only if for every a €B there
exists vyE€T" with the property that the horoball at £ through ~(a) contains no I-
image of ¢. In view of lemma 2.6.2 we have the following result.

Theorem 2.6.3 Let T be a discrete group acting in B and £E€S then §is a
Dirichlet point for T' if and only if, for every a €B there exists y€I' with
&) €D, .

Thus the Dirichlet set is precisely the set of points of S which are
represented on the boundary of every Dirichlet region. The set D of Dirichlet
points has an interesting property. If £€ D is not a fixed point, then from each
orbit I{e) we may seleet a  representative which minimizes
ha) — €]*(1 — h(a)|)~" and it is possible to do this in such a way as to obtain a
convex fundamental region for I. This region has a very natural interpretation as
a Dirichlet region centered at £ in a topological sense. For details of the
construction see [Beardon and Nicholls, 1982] and [Nicholls, 1984].

In terms of derivatives, we note from theorems 1.2.5 and 1.3.4 that ~(0)
belongs to the horoball at & of Euclidean radius £ if and only if
_ 1—k
Iy @ > 25
and as an immediate consequence we see that if §E€D then the sequence

{v' (&)} : v€T accumulates only at zero. In fact Pommerenke [Pommerenke,
1976] has shown much more.

Theorem 2.6.4 (Pommerenke) Let T' be a discrete group acting in B. For

almost all (w) £ €D the series Y hy' (£§)|" ! converges.
7€T

Proof. Select a €B and write ¢, =dD,(MS. We first prove that if 4%/ then
e;(Y(¢,;) is countable. To see this, suppose {€e, n'y(ea ), then the rays joining
a to & and a to v7Y(€) lie in D,. Thus the ray from ~(a) to & lies in (D, ) and
we deduce that the hyperbolic bisector of the segment joining @ to ~(a) ends at &.
There are only countably many such bisectors and hence countably many such &.
It follows that the sets {y(e,): Y€ET} overlap in at most a countable set and so

the sum Y w(~(e,)) converges. Thus
~€eTl

SN @I = [ 5 b dw
~er ™ ‘verl

converges and it follows that the series ¥ by’ (€)|*~! converges for almost every
V€T
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point of ¢,. Clearly then the series converges for almost every point of | ) (e, ).

v€T
But this latter set includes D and the theorem is proved. O

Corollary 2.8.5  Let I' be a discrete group acting in B. If w(D) > 0 then I’
converges at the exponent n—1.

Proof. From theorem 1.3.4 we know that for any Moebius vy and §€ S

(Y 1 = (1 = hO)P) I€ — o).
So from the theorem, the series ¥ (1 — h(0)]) * ! converges. O
~€r

It should be remarked that in [Pommerenke, 1976] there is an example to
show that the converse of this corollary is false (at least in dimension 2).

Contrasting D with H we observe that DMH = (J for any group I’ but
there is the possibility that D| JH # S and we will consider this situation later.
However, the following result ( implicit in [Pommerenke, 1976] in two dimensions
and due to Sullivan [Sullivan, 1981] in higher dimensions) shows that D|JH
comprises most of S.

Theorem 2.6.8  Let I be a discrete group acting in B. The sphere $ may be
written as the disjoint union

S =H|Dye
where w(Q) = 0.

Proof. Using theorem 2.5.1 and corollary 2.1.3 we observe that for any discrete
group the set H has the same measure (w) as the set

U L(a:k,1/2)
k>0
but this latter set comprises those points £ of $ with the property that an orbit
enters some horoball at £ infinitely often. The complement of this set comprises
those points 5 of § with the property that every horoball at 1 meets every orbit
finitely often. Such points, in view of lemma 2.6.2, are points of D and the
theorem is proved. O

What can be said about the set @ of theorem 2.6.6 ? If £ € Q@ then for some
a €B the set
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[h(a)—sF : 7GF}

1 — ha)

is bounded away from zero and does not have an attained minimum.
Geometrically this means that there is a critical horoball based at £ containing no
I-equivalents of ¢ but with the property that any larger horoball contains
infinitely many such equivalents. Such a limit point is called a Garnett point
and such objects are known to exist in all dimensions — see [Nicholls, 1980] for
example. They can arise as limit points which are represented on the boundary of
some but not all Dirichlet regions for the group.

2.7 Parabolic Fixed Points

Let us suppose that a discrete group I' acts in the upper half space H of R™ and
that oo is fixed by a parabolic transform in I'. Write I', for the stabilizer
subgroup of oo. As we have seen in section 1.3, 'y, acts as a group of Euclidean
isometries of 3H = R™*~1. We make the almost trivial observation that if D is a
fundamental domain for the action of I,y on R"™! then D X (0,00) is a
fundamental domain for the action of I',, on H.

We next describe some properties of I',, and refer the reader to [Bowditch,
1988] for the proofs - these results are also to be found (implicitly) in [Wolf, 1974,
p.100]. The group I',, possesses a normal subgroup of finite index, say G, and
there is a non empty G-invariant plane in R* ~1 on which G acts as a group of
Euclidean translations. We denote this plane by P and call it the translation
plane of I' .. An example might be helpful at this point.

Consider the orthogonal matrix A defined by

cos@ —sind 0 000

sin@ cos®# 0000

0 01000

4 =1 9 00100
0 00010

0 00001

and the vectors o = (0,0,0,1,0,0) 8 = (0,0,1,0,0,0). The parabolic transforms P,
P,, of H the upper half space in R8, defined by

P(z)=A4z + o Pyz)=z + 8

clearly generate a discrete group which could arise as the stabilizer of oo in some
discrete I. Note that < P,,P,> acts as a group of Euclidean translations on the
4-dimensional plane
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P =((0,0,2,,z9,23,24) : 7; € R, ¢ =1,2,3,4).

In general, there will be a subplane of P, preserved by I',, and whose quotient by
I is compact [Bowditch, 1988 p.13]. In the example above, this is the 2-
dimensional subplane

((0,0,2,,7,,0,0): z; ER, i =1,2).

In the general case, the dimension of this subplane is defined to be the rank of
the parabolic fixed point.

As an application of these ideas we prove a result which will be needed in
the next Chapter.

Theorem 2.7.1 Let T be a non-elementary discrete group preserving H with
00 a parabolic fixed point of rank k, then the number of transforms 4 €T, such
that m < |y(z,) — 2, < m+1, where z, =(0,0,0,..,0,1), does not exceed a

constant multiple of m*~1,

Proof. Note that I',, possesses a subgroup G of finite index which has an action
as a group of Euclidean translations on a copy of R¥. We consider G as acting
on R* and wish to estimate the number of 4 € G such that m <~4(0) < m+1.
An upper bound is easily obtained by a volume argument. Place a small ball
about O and consider the number of its images in the shell
{z :m <|z| < m+1}. The volume of this shell is a constant times m*~!. Now
consider the action of G in the n—1-dimensional space {z € R" : 1, =1} and it
follows that the number of 4 in G with

m < Iz, — 7] < m41

is at most a constant times m*~1, Noting that G is of finite index in T, the
proof of the theorem is complete. O

We next introduce the notion of a bounded parabolic fixed point [Bowditch,
1988, p.14]. As before, denote by I'y, the stabilizer of the parabolic fixed point oo
and write o, for the minimal plane preserved by I',, and whose quotient by T, is
compact. We say that oo is a bounded parabolic fixed point if the Euclidean
distance between y and o, remains bounded for all limit points y (except oo). It
is not difficult to see that this happens if and only if the quotient by I', of the
limit set minus oo is compact.

When n =3 this notion was introduced in [Beardon and Maskit, 1974] —
they called such a parabolic fixed point cusped. They proved that a group is
geometrically finite if and only if the limit set comprises cusped parabolic fixed
points and conical limit points. In higher dimensions we could adopt this
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property of the limit set as the definition of geometrical finiteness — it is
equivalent to several other natural notions of geometrical finiteness (see
[Bowditch, 1988] for a full account). However, we stay with the definition given
in Chapter 1 — namely, that a group is geometrically finite if it possesses some
convex fundamental polyhedron with finitely many faces. This is in fact a more
restrictive definition. The methods of [Beardon and Maskit, 1974] extend to
higher dimensions and yield a proof of the following result.

Theorem 2.7.2  Let I be a discrete group preserving H. If T is geometrically
finite then the limit set comprises bounded parabolic fixed points and conical limit
points.

As an application of these ideas we conclude this section with an estimate on
the size of cuspidal ends of the quotient space H /T near a bounded parabolic fixed
point. This result will be used in Chapter 9.

Theorem 2.7.3 Let T be a discrete group preserving H with oo a bounded
parabolic fixed poirt of rank k. If C(A) is the convex hull of the limit set A of T’
and if C,(A) denotes a unit neighborhood of C(A) then the hyperbolic cross
sectional area of C,(A) /T at height ¢ is O(t~*) as ¢t — oco.

Proof. Since oo is a parabolic fixed point of rank k£ then we know that there is a
k-dimensional minimal hyperplane o, preserved by ',y and whose quotient by
T, is compact. Without loss of generality we assume that

O = {(z,,29y++7;,0,0,...,0); 7; ER, §{ =1,...,k}.

Note that if y = (y,,Y9y:y¥,—1,0) is a limit point for I' then there exists M with
Iy,-| < M, i =k+1,..,n—1 — this is because oo is a bounded parabolic fixed
point. It is immediate that C'(A) is contained in the region

{(Z 15T 0y Tp s T 13oeesTp 1% ) 2 Ty 205 |3 | < M, & = k41, ,n—1}.

One easily verifies that, for some T , Cy(A)\{ z : z, > T} is contained in the
region

{(Z1sTopeesTp sTp g19eesTu—1s%s ) 2 Ty 2 T 5 |5 | < M +23, , ¢ = k+1,..,n—1}.

since unit hyperbolic separation at height z, corresponds to a Euclidean
separation of an amount z,. The quotient of the region above by I is contained

in the quotient by I' , and this in turn is contained in some region

{(@1sTppeesn) 1 2 2T ;5 |3 | < A, 4 =1,k; |5 | < M 422, , i =k+1,..,n—1}.

The non-Euclidean cross sectional area of this region at height ¢ is clearly given
by (24 }*[2(M +2t)]" ~'~* / t* ~1 whichis O(t™*) as t — 00. O



CHAPTER 3

A Measure on the Limit Set

3.1 Construction of an Orbital Measure

In this chapter we will follow the work of Patterson [Patterson, 1976a] and
Sullivan [Sullivan, 1979] in constructing a remarkable measure which is supported
on the limit set of a discrete group. In order to understand the local properties of
this measure and to see that it is unique (at least for convex co-compact groups) it
will be necessary to go into the more general question of conformal densities —
this will be done in chapter four. In view of the critical role played by this
measure in the ergodic theory, we give in this chapter full details of its
construction. The results in the first four sections are due to Patterson
[Patterson, 1976a] and Sullivan [Sullivan, 1979]. Our point of view and notation
are somewhat different.

The hyperbolic distance between two points z,y in the unit ball B will be
denoted throughout this chapter by (z,y). Let I' be a discrete group of Moebius
transforms preserving B and for z,y €B, r >0 recall the orbital counting
function N(r,x,y) of section 1.5

N(r,z,y) = card{y€T: (z,7y) < r}.
For z,y €B the quantity

6“, = lim sup 1—log N(r,z,y)
' r — oo r

is finite (in fact it does not exceed n —1 by theorem 1.5.1). Considering the
Poincaré series

6,zy)= T emem)
~€T
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and the partial sum

R
e~z = N(R,z,y)e ™k + 5 fN(t,z,y)e~*dt
7€l (z19) <R 0
we see that the series converges if s > §, , and diverges if s < 6,,_”. The triangle
inequalities:

() <(=¥)+@wny) , (zY) 2 Wy) —(z,9)
yield

e=*=¥)g, (y,9) < g,(2,y) < e*V)g, (y,y)

and it follows that 6,,_” depends on I only and not on z or y. The exponent will
thus be written §T), or simply & It is the critical exponent of section 1.6 and we
note again that § < n—1.

In the construction of the measure an important distinction has to be made
between those groups whose Poincaré series converges at the critical exponent and
those for which the series diverges at the critical exponent. Recall from section
1.6 that the group is of convergence type in the former case and of
divergence type in the latter.

For z,y €B and s> the b(asic )idea is to construct a measure by placing a
e—9(zy
9:(v,9)
Helly’s theorem to obtain a measure in the limit as s — §*. It will readily be
seen that if the group is of divergence type then all the mass of this limit measure
will be swept off to the limit set (since gfy,y) = 00) and the construction is
complete. However, if the group is of convergence type one simply obtains a new
measure with point masses on the orbit of y. To overcome this difficulty, the
point masses are multiplied by a factor h(e("'"’-")) which will not alter the critical
exponent of the series but which will ensure divergence at that exponent. The
required properties of this function A are given in the following lemma due to
Patterson [Patterson, 1976a p.245).

Dirac point mass of weight at each point ~y. One then appeals to

Lemma 3.1.1 Let T be a discrete group with critical exponent 8. There exists
a function A : Rt — R which is continuous, non-decreasing, and

1. the series )] e"(”"’”)h(e("""”)) converges for s >6& and diverges for s <§é
v€T
and

2. if €>0 is given there is rq such that for r>rg, t>1 , h(rt) < th(r).
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As a consequence of property (2) above we note that for ¢ in a bounded
interval of R

h(e"”)
h(e™)

— 1
uniformly as r — oo.

Proof. (Patterson) We write I' = {y, : n = 1,2,...} ordered in such a way that
a, = e™Y) increases to infinity. Let {e,} be a sequence of positive numbers
decreasing to zero. We will define a sequence {X, }, with X,, — oo, and A on the
interval [X,,X, ;] inductively. Let X, =1 and set A(z) =1 on [0,1].

If & is defined on [0,X,] then choose X, , , so that
h(X,)

_6_61)
- a, ( 2 1. (3.1.1)
Xn- X- <ap qu+l

This can always be done as Y, ap_(ﬁ_c‘) diverges. Now if z € [X,,, X, , ] define

€a

h(z) = h(X,) [; (3.1.2)

It is clear that Y A(a, )-a," diverges because

00 " 00
Zh‘(ap)'ap_6= E E h‘(Xn)' [ap/Xn]-'ap_62 E 1
n =10, €[X,X, 11 nel
by (3.1.1). From (3.1.2) we note that & is positive and increasing. Given ¢ >0
find n so that e>e¢,. If 22X, then logh(z) is, by (3.1.2), a piecewise
continuous function of log z and the slope of each component is at most ¢,. Thus
ify>X, andz > 1

log h(zy) —log h(y) <elogz
which is just what we want.

It remains only to show that 3 4(a,) a,® converges if s > 6. Choose ¢ >0
so that é+¢€ < s. Then, as p — o0, h(e,) = O(a,) by what we have just
proved. The convergence of the series follows at once, and the lemma is proved. O

Before proceeding with the construction of the measure we derive an
estimate on the function A. This estimate is stated in the context of the upper
half space H of R* as this is the form in which it will later be used. For a
positive real number z we write z, = (0,0,...,0,2z) and we have the following.
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Lemma 3.1.2 If ' is a discrete group preserving H, if ¢ > 0, and y € H then
there exists a constant B depending on I, y, and € such that for all z > 1 and all
verl,

h(e(z"w)) < Bz‘h(e(z"vy)).

Proof. Choose € > 0 and y € H. Note that e(*"¥) < (521 ¢(*1V9) 5pq that
=) = 4. Applying lemma 3.1.1 we see that there exists r; so that if
(z,Vy) > ro then

h(e(z.,Vy)) < z‘h(e("'vy)). (3.1.3)

Thus there exists a finite set of V €T, say {Vl,...,V,, }, with the property that
(3.1.3) holds for all V not in this set and all z > 1. Now we have only to deal
with a finite set of V' and we may choose w > 1 so that (z,,Vi(y)) > ro for
t=1,,k. f1 <z <w then {h(e(”"'v‘(”))) :¢=1,.,k} is bounded above by a
constant depending upon I' and y — the conclusion of the lemma is trivially true
for such z. Now suppose z > w and set v = z/w. We have

h(e(z:."y)) < h(e((zl.zo)+ (zw.V!l))) = h(ue(z"vy)).

But v > 1 and (z,,Vy) > ro if V€ {V,,...,V;} and so for such V we may
appeal again to lemma 3.1.1 obtaining

v, Vi
h(e(z,,Vy)) < uc h(e(z,,Vy)) = z¢ h(e(z,,Vy)) h!e(z y)) .
h(e(zl.vy)) we
However, w > 1 and the term in square brackets above is bounded by a constant
depending on ¢,y, and T if V€{V,,...,V,}. This, with (3.1.3), completes the
proof. O

We return now to the construction of the measure. If T is of divergence
type we may simply take A to be 1. With this convention in mind we now modify
the Poincaré series defining

g:(y’y)= 2 e"(l"’m)h(e(y.'m))
v€T

and form the measure

2 e_‘(zﬂy)h(e(zﬂy)) D(’Yy)

N =
0 g wy) ver

for z,y €B, s> 6 and with D(yy) denoting the Dirac point mass of weight one at
~y. Thus for a Borel set E in B we have
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3 e Ep (N5 (vy)
y,(y,y)ver

where 15 is the characteristic function of E. Note once again that if I' is of
divergence type we may take

F"z,y,a(E) =

-a(z,9 )1
y,(y,y) Ere s(1w)

We will not be changing the point y and so, with the y dependence implicit, we
will henceforth write p, ,.

3.2 Change in Base Point

F"z,y,a(E)

In this section we will consider how the measure y, , varies with z as s (>0) is

held fixed. In order to do this we will have to compare terms such as e~*(*%) and
—s(z’ y)

Lemma 3.2.1 Given z,z' ,w in B and £€ JB then

elz,w) P(z',f)
W T Pag v

— .02
where P(z,§) is the Poisson kernel }—l:‘;—:z
z —

|z —w[?( = |z])7' (1 = |w|?". The left hand side is asymptotic to e(*
(z,w) = oo. The right hand side is asymptotic to P(z,§)"!(1 — |w|?)~
w — & and the result follows immediately.0

Proof. From [Beardon, 1983 p.131] we note that 4 sinh®((z,w)/2) =
¥) as
I as

The following estimate compares the size of u, (E), p,s ,(E) if E is a Borel
set contained in a small neighborhood of £ €€ dB.

Theorem 3.2.2  Let I be a discrete group with critical exponent 6 and suppose
§>08. Choose z,0' € B and £ € dB. Let E be a Borel subset of B and, for
t>0, let E(t) be the part of £ within a Euclidean distance ¢t of §. For ¢>0
there exists ¢(€) such that if ¢ <i(e)

[ Pﬂ(a%] ‘f](l-f)uzf.a(E(t)) < #, (E(2))

Pz |
P 6 + e | (1+e)p, ,(E(2))-
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Proof. We write U(t) for that part of B within a Euclidean distance ¢ of £ and
so E(t) is contained in U(t), we may thus write

1
F"z,s(E(t)) =—
9:(¥,Y) very e Ut)

et =19 (e579)) 15 (yy)

which equals

1 e—(z,1y) h(e(”'v’”f))
1 1 e
95(¥,9) reryev() e W) h(elm W)

Choose €>0 then, from lemma 3.1.1 and lemma 3.2.1, there exists ¢(€) such that

if t<t(e) and vy € U(t),
h(eEw) ) P8 [
h(e(z' ) P(z,6)

These estimates in the above expression for u, ,(E(t)) yield the required result. O

_‘(zl .7y)h(e(zl .'1.'1)) ]_E(’Yy).

| e—3(z.)

< ¢ and |e“("'"'”‘)

< €

Corollary 3.2.3 With z,2' and E(¢) as in the theorem

lim Hea(EQ®)) P(z,0) |

b0 By J(EQ) | | P8 )

We should remark here that although it does not make sense to speak of the
(%)

d”’z’ ,8

on OB — the corollary above gives useful information concerning the relative sizes
P(z,£)

P(z',£)

Radon-Nikodym derivative (§) — because neither measure has any mass

of 4, , and p,s , near §& We will see the quotient later on in the
context of a genuine Radon-Nikodym derivative.

If we consider now how the measures u, ,, 4,1 , are related when z,z' are
I-equivalent we obtain an invariance property. For a positive finite measure u on
B and for any Moebius transform 4 we define a new measure v*u by

Y*E) = HE))-

Theorem 3.2.4 Let T be a discrete group with critical exponent 8, s > 6 and
z €B. Then for any y€T,

'7*”':,5 = Hyig)e-

Proof. Suppose V is a Moebius transform preserving B then by definition,
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1
9,(,9) ~er
Set 7 = V~!4 and note that v(y)€ V(E) if and only if V"!4(y)€EE .., if and
only if f(y)€E. If V €T then as « runs over I, 5 also runs over I" and we have

b o (V(E) = —— 5 e~V 2m (V' 2m0)1 1 (5(y) = s, ().
9, (¥,¥) ger

Ha o (V(E)) =

e~ (& Wh (el N1y p\(vy).

The required result follows when we replace V by 4. O
3.3 Change of Exponent

In this section we consider the behavior of the measure u, , as s approaches &*.
We will need to use Helly’s theorem for which the following will be required.

Lemma 3.3.1 Let T be a discrete group with eritical exponent é. For z in B
the family of measures {u, ,: §<s <6+1} is weakly bounded. In fact g, ,(B) is
bounded independently of s in this range.

Proof. Note that
2 e_‘(zv7y)h (e(z.'m ))
= r
/"'z,a(B) =15 (3.3.1)

S e~ )p(ev 1))
~€T

By the triangle inequality e~2(*7) < ¢2(2.3)¢=2(¥7), and so the numerator of
(8.3.1) does not exceed

(z.,7y)
3(z,y) -a(y.'m)l‘(e___) (v,79)
B

However, from lemma 3.1.1, for all except finitely many terms in the series,

h (e(z.'m)) <2
h(e(my))

and we deduce from (3.3.1) that
e o (B) < Ne?le)
where A depends only on (z,y). We similarly obtain a lower bound
ty o(B) 2N e2E)
and the proof is complete. O

Thus for z €B we may appeal to Helly's theorem to deduce that on a
sequence of values of s approaching &t the measures By, converge (in the
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topology of weak convergence) to a measure y, on B. We will write Bz o, = By
in this case. There is no reason to suppose that a unique measure is obtained in
this way — different sequences may yield different weak limits. In fact for many
groups this measure will be unique — but we have to wait until the next chapter
for results of this type. For the present then we must consider a whole family of
possible limit measures and accordingly define, for € B, M, to be the collection
of measures u, on B with the property that for some sequence {s,} monotonic
decreasing to &* , p, , — u,.

The measures thus constructed are the ones we are after — they are
concentrated on the limit set of the group.

Theorem 3.3.2 Let T be a discrete group with critical exponent & For any
z €B and any p, € M, , the measure , is concentrated on the limit set of I'.

Proof. It is clearly sufficient to show that if O is a (relatively) open set in B
containing no limit points then p,(0O) = 0. It is sufficient to prove that a ball A
centered at some <y and containing no other I-image of y has u, measure 0.
Since A is open we have, as a consequence of Helly’s theorem, that

lim inf p, , (8) 2 p,(8)

fn —+ 00
where {s,} is the sequence, monotone decreasing to &, on which By, = B
However,
e—d.(z.vy)h(e(z.w))

g, (v,v)

F"z,s,(A) =

and to complete the proof of the theorem it remains only to show that
lim gs: (v,y) = oo .
7 =+ 00
With y fixed we write I'={y,,}, m =1,2,3,... so that A\, = (¥,7(v)) is non-
decreasing. We write a,, = k(e (¥ )) and form the Dirichlet series

16) = 8 ape
me=1

which is analytic in the half-plane Re(z) > 6 [Titchmarsh, 1939 p.290]. The
point s = § is a singularity for f(s) (since a,, >0 for all m) [Titchmarsh, 1939
p-294]. Thus if s is real and monotonic decreasing to 6§, f(s) is unbounded as
required.0

Now the measures have been constructed, we will be concerned in the next
section with the relation between the classes M, M, for z,z' €B.
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3.4 Variation of Base Point and Invariance Properties

Consider the collection of signed measures on 3B endowed with the topology of
weak convergence. For any £ € B we may regard M, as a topological space using
the subspace topology. For z,2' € B there is a natural correspondence between
M, and M_, which is given in the theorem below.

Theorem 3.4.1 Let T be a discrete group with critical exponent & Choose
z,r' belonging to B and for v, €M, define a new measure ¢(v,) by

5
P(z',8)
P(.’L‘,E) ] de(E).

Then ¢ is a homeomorphism of M, onto M,,. The inverse map is given by

]
Pz, ]de/(E)-

¢(Vz )(E) = IE

¢_1(Vz’ )(E) = fE

P(z',§)
Further, if v, , converges weakly to v, as s; — &t then Uy o converges weakly
to ¢(Vz)'

Proof. We recall theorem 3.2.2 and, interchanging the roles of z and z’, we

have

P g [
%@T)] _6](1_6)“z,a(E(t))Sﬂzr,,(E(t))

Pe o) |,

P(.’L‘,E) (l+€)/"'z,a (E(t))‘

Let {s]-} be a sequence of values of s, monotonic decreasing to §, on which [
converges weakly to v,. Suppose that on two subsequences {s;}, {sj’} the

measures u,s , converge weakly to v, and o, respectively. Then, from the
above,

]
%(2%))] _6](1‘6)%(1'3(0) <uv(E(t))

P!z',f!
P(z,8)

1}
+ 6](I'H)Vz(l'f(t))

and the same inequalities will also hold with v,/ (E(t)) replaced by o,/ (E(t)).
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Letting ¢ — 0 we see that v,s, v, are absolutely continuous with respect to each
other and that o,, v, are absolutely continuous with respect to each other,
further, the Radon-Nikodym derivatives are given by

P8 |
P(z,§)

From this it follows that v,:, 0, are the same and that ¢(v,) =v,/. Thus we
have proved the last statement of the theorem and have also shown that ¢ is a
map from M, into M,,. We may clearly reverse the roles of z and z’ to see that
the map Y on M, given by

del dO'zr
(£) = (&) =
dv, ) dv, ()

P z,
P( 7 E) ] duz’ (E)

is a map from M, into M,. It follows immediately from the properties of the
Radon-Nikodym derivative that 1 is the inverse of ¢ and it remains only to
establish the continuity of ¢.

W NE) = [,

Suppose {u,-,’ 1] = 1,2,3,...} is a sequence of measures in M, converging
weakly to v, in M,. Let f be continuous with compact support on B then
f(P(z',8)/ P(z,E))‘ is also continuous with compact support on 8B and so, by
weak convergence,

Jast

But this means

P!z,!
Pz ,ss) ]]d” = Jou!

[
P(z' ,§)
P(5,6) ]]d”’

fan dv} — fan dv,
where v = §(v]) and v, =¢v,). It follows that ¢(v]) converges weakly to
#(v,) and so ¢ is a homeomorphism. O

In view of this homeomorphism we shall adopt the convention of using the
same greek letter for maps in M, and M, if and only if they are equivalent under
¢. Thus if we write v, €M, and v, €M, it is to be understood that

Vpr = ¢(Vz ).

To recapitulate, theorem 3.4.1 says that for v, € M, and v,» € M,/, v, and
v, are absolutely continuous with respect to each other and

[duz }f)= P(z.£) ]6.
del

P(z',€)
Alternatively, for any Borel subset A of OB the quantity
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[ (P(@8)du, (&)
is independent of z € B.

The connection between the measures v, v,» may also be expressed in terms
of the derivative of a Moebius transform ~ with 4(z) = ' (note that we do not
require that Y€1), The derivative used in this connection is derived from the
metric obtained on 9B by radial projection. Start with the great circle metric d
on OB defined by

do(ém) = Jarccos £.9].

Now for z €B select a Moebius transform V preserving B such that V(z) =10
and define

d,(&m) = do(V(€), V().
If £ €B, ~y is Moebius preserving B, and £ € B we define

. 4 (A& (n)
hz' (E)I= lim ._M
n—¢ d(&n)
Lemma 3.4.2 For any Moebius transform < preserving B, for £ €B and

£€oB,

! — P ’7_1 -’3),5)
b ()] = ZEEIE)

Proof. Suppose V is a Moebius transform preserving B with V(z) = O then, by
definition,

d.(&n) = do(V(£),V(n).
If we suppose that &, are close then so are V(£),V(n) and we have

d(&n) = VE) — V() = [V @IV (n)]'/2l€ - nl
from (1.3.2). There is a corresponding expression for d,(Y(£),%(n)) and we have

h '(E)I = I(V'Y)I (E)I
: V7 @)l
Now if V is Moebius with V(z) = O then we recall from section 1.3 that V' can be
written as T, followed by a rotation. Thus, from (1.3.9),

1—|z|?

IGIRILAGIEE

= P(z,£).

From the above we see that
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! = P ’7_1 T 76
b (1= £ 28

as required. O

As a consequence of theorem 3.4.1 and lemma 3.4.2 we have

Theorem 3.4.3 If z €B, ~ is a Moebius transform preserving B, and E is a
Borel subset of OB then

i (E) = J, ! (©)Fd s (©)

We now turn to a consideration of the relation between f1,-y,) and p, in the case
that 4€I. Recalling the definition of ~4*u the following is an immediate
consequence of theorem 3.2.4.

Theorem 3.4.4 If I' is a discrete group preserving B and if 4 €T, then for any
z€B

Vg = tyyzy-

This last result, in conjunction with theorem 3.4.3, shows that for a Borel subset
E of 3B and v€T

. (AE)) = J, b, ©Fd s (©)

Thus we have a measure behaving in essentially the same way as a 6-dimensional
Hausdorff measure. This tells us that we are on the right track. The precise
connection between our measure p, and Hausdorff &-dimensional measure will be
explored in the next chapter.

As a corollary we have the following result of Beardon [Beardon, 1968].

Corollary 3.4.5 For a non-elementary discrete group I' the critical exponent is
positive.

Proof. If the critical exponent § = 0 then for v,,v,; the Radon-Nikodym
derivative is identically one and thus v, = v,/. Theorem 3.4.4 may be applied to
show that for every Borel set E of OB and every Y€, v, (E) = v, (4(E)) and we
have a [-invariant measure on the limit set. Select E in dB, a ball of positive v,
measure and note that, since I' is non-elementary, E contains distinct hyperbolic
fixed points, say § and 5. Let H, and H, be hyperbolic transforms in T fixing &
and 7 respectively. By taking powers if necessary we may assume that H,(E) and
Hy(E) are both subsets of E and do not intersect. Thus
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V,(E) 2 v, (H\(E)) + v, (Ho(E)) =20, (E).
This contradiction completes the proof. O

We summarize the properties of the measure. Any measure v, belonging to
the class M, of measures obtained for a discrete group I' with critical exponent é
satisfies

e U, is supported on the limit set of I

o For z,5' € B, v, v, are absolutely continuous with respect to each other
and the Radon-Nikodym derivative satisfies

[du_zl}f) - P(.’L" 762 ]6
dv, )

P(z,8)
o V¥V, =Vpy, foryEL

e Y¥y, = hz' Iﬁuz'
In the following section (the last of this chapter) we consider the atomic part of
the measure. At first reading, rather than disturb the flow of ideas, the reader
may wish to proceed directly to chapter four. The crucial result from the next

section is that the measure has no atomic part if the underlying group is
geometrically finite.

3.5 The Atomic Part of the Measure

If ' is an elementary group then the limit set is finite and consequently each
measure in the class M, is purely atomic. In this section we consider the situation
for non-elementary groups. It will be shown that for large classes of groups there
is no atomic part to the measure.

It will be convenient to work in the upper half space and accordingly we
write

H ={z€R" : = (z,25,...,3, ) and z,, > 0}

and define, for 1 < j < n, the s# coordinate map pj(z) = z;. We use again the
notation (x,y) for the hyperbolic metric obtained from the differential . d(:i)

n
the construction of the measure ., (z € H) may be carried out as before with the
Poisson kernel replaced by the upper half space version

P =p(z)  Pog) =T itesoo

| — &P

Our first results characterize the stabilizer of a point mass and establish the

and
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convergence of a certain series.

Lemma 3.5.1 Suppose I is a non-elementary discrete group preserving H and
that oo is a point mass for the measures M,. If I j — the stabilizer of co —
contains no parabolic elements, it is finite.

Proof. Suppose ~€ET, then for z €H, v, (v ' (o0))=v,(c0) and so
Vo2)(00) = v, (00). It follows that

(=) _ P(Az)oo) _ [du,(,), F_
@ Pla,oo) (©)

which makes sense because, from corollary 3.4.5, 6 > 0. Thus the elements of I,
preserve p,(z). It follows from this that if I', contains no parabolies then it is
comprised entirely of elliptic elements of finite order (loxodromic elements will not
preserve p,(z)). We may now appeal to the strong form of the Bieberbach
theorem [Wolf, 1974 p.102] to deduce that I, is finitely generated with a torsion
free subgroup of finite index. This torsion free subgroup is necessarily the identity
and the proof is complete . O

Lemma 3.5.2 Suppose I is a non-elementary discrete group preserving H and
00 is a point mass for the measures M, . The sum

T (V)P
over a system of coset representatives of I'/T, converges.
Proof. If V, and V, are two transforms appearing in the sum then
Vi 1(00) # V4! (00) and so, since v, is a finite measure,
v (V7(00)) < 00 and  Fwy(;)(o0) < oo
from which it follows that
§
P(V(z),00)

Y, Pla,09) v, (00) < o0.

In other words $'p, (V(2))’ < oo as required. O

Note from the last two lemmas that if oo is a point mass which is not fixed
by a parabolic transform then the series

2 P (V)

7€T

converges. As another consequence of the last two lemmas we show that a conical
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limit point can never be a point mass.

Theorem 3.5.3 If T is a non-elementary discrete group preserving H then a
conical limit point is not a point mass for the measures M, .

Proof. By conjugation we may suppose that the conical limit point is at infinity.
Then, by definition, we may find a sequence {V]-} of transforms in I' and y €H
such that the sequence {p, (V;(¥))} is strictly increasing to infinity. If oo is not a
parabolic fixed point then by lemmas 3.5.1 and 3.5.2 it cannot be a point mass.

There remains the possibility that oo is both a conical limit point and a
parabolic fixed point (in dimensions 2 and 3 this situation cannot occur —
[Beardon and Maskit, 1974 p.5] — however, we cannot rule it out in higher
dimensions). We pointed out in section 2.7 that if co is a parabolic fixed point
then I'y, preserves any plane {z:p,(z) =X > 0} and it follows that the sequence
{V;} introduced above contains no two elements from the same coset of I'/T. If
oo is a point mass we have a contradiction with lemma 3.5.2, and the proof of the
theorem is complete. O

For z a positive real number we write z, for the point (0,0,...,0,2) and our
main results estimate the size of g,(%,,y) in terms of z. As one might expect, if
oo is a parabolic fixed point the estimate is quite different than if it is not.
Crucial for our purposes is the following result of Beardon [Beardon, 1968].

Lemma 3.5.4 If I is a non-elementary discrete group containing a parabolic
fixed point of rank k then §I) is strictly greater than k/2 .

We denote by D a convex fundamental domain for I in its action on H.
Note, from the proof of lemma 3.5.1, that D may be chosen to be of the form D
= D*X R* where

D' ={z€R"!: |z]| < |z—(0)|all yET—I}.

Theorem 3.5.5 Let I" be a non-elementary discrete group preserving H and
suppose that oo is a point mass for the measures of M, and is also a parabolic
fixed point of rank k. With y €D and notation as above, for sufficiently small
€ > O there exists a constant A independent of s (§+1 > s > 6) and z (> 1) such
that

0, (2,,y) < AZ¥Ye Y p (V(y))*h (e(z" vy ))'
V.VyeD

Proof. In order to estimate the terms appearing in the series for g,(z,,y) we
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need the following result.

Lemma 3.5.6 Let I' be a non-elementary discrete group preserving H with oo
a parabolic fixed point. If Y€, and V(y)ED then forall z > 0

e(,’(z')'y(y)) > 22 + h(zl) - zllz
42p,(V(v))

Proof. From [Beardon, 1983 p.130] we have

2
Loy 2 P& = VEP e ven
22 (V(v))

Writing V(y) = + vz, with p,(V(y)) = v, since V(y)ED, we have from
(8.5.1)

(3.5.1)

=LV S WO+~ —vr |2+ 20
2V

O = u |2 4(z = vl +

IN0) | + 42% — 42v + 40?
4zv

24 .2 2 _ 2
70) |2 + = ;3w + 4w (3.5.2)
4z 4zv
It is easily checked that the second term on the right side of (3.5.2) is never
negative and so

L) 5 h@I2+22 2 hiz) —a |

4zv 42p, (V(y))

as required. O
Returning to the proof of the theorem, we estimate

g:(zzvy) = 2 e_‘(znVy)h(e(z,,Vy)).
Ver

With ¢ > 0, we appeal to lemma 3.1.2 and find a constant B, depending only on
T, v, and € such that

R V) < B 2/3h(el""Y)
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for all V€l'and z > 0. Thus
g;(zzvy) < Bz‘/3 Z e_‘(z"V.V)h(e(zl,Vy))'
Ver

Writing this as a double sum over cosets

0. (59) < Bz ¥ 3 et W (0T, (3.5.3)
V.VyeD ~€ls

For an upper bound on h(e("z" V”)) note that (yz,Vy) < (yz,,2,) + (2, Vy) thus
e('rzl.Vy) < e(ﬁzl,zl).e(zl.Vy) < c) h(zl) _ zllze(zl. Vy)

where the estimate e(*)%) < ¢(I) |y(z,) —z,|? follows directly from
[Beardon, 1983 p.130]. Thus for all except finitely many V €T

B ™) < D) hiay) = 2 h(1)),

where we have used lemma 3.1.1 with € replaced by ¢/3. With this result and
lemma 3.5.6, there is a constant K independent of s (6<s <é+1)and z (z > 1)
for which the inner sum in (3.5.3) does not exceed

K S 2 py (e ben) = 2 bie) = 5,00 (el
YETw

This quantity may be rewritten

_ /3
Kp, (Vy)h e(-’h.vy) 2= h(zl) zllz
P (Vy) h( ) 762;“,(1 + Z_zh(zl) _ zllz)a

and the sum occurring here may in turn be rewritten

i h(zl)_zllzc/a
m=0 refp (1 +272h(z)) — 2,|%°

m<hiz l)_' l|<m-H

, (3.5.4)

This does not exceed a constant multiple of

i mk—l m2€/3
m =0 (1 + m?272)

by theorem 2.7.1. We bound this sum by an integral
2¢/3
f k 1 ! —_—  dt
r (4770

and change variables by u = —:— to obtain



62 Chapter 3 A Measure on the Limit Set

Sk +2¢/3 f““z‘/a_l du
R (1 + Uz)‘

Since 6§ > k/2 (lemma 3.5.4) then for € < 3/2(26—k) the integral above
converges for all s > 6, With this information in (3.5.4) we find a constant A (€)
independent of s (§<s <6+1)and z (>1) so that

g:(:v,,y) < Azktee 2 p,,(Vy)‘h(e("'V!‘)),
V.VyeD

and the proof of theorem 3.5.5. is complete. O
A similar result may be obtained when o0 is not a parabolic fixed point.

Theorem 3.5.7 Let I" be a non-elementary discrete group preserving H and
suppose that oo is a point mass for the measures of M, which is not fixed by any
parabolic element of I. For sufficiently small ¢ > O there exists a constant A
independent of s (6<s <&é+1) such that for z > 1

0,(2,,9) S Az ) p, (V(9)) (1),
Ver

Proof. Using estimates employed in the previous proof, we have

0@ y) = 5 eV (M) < B2 3 7o V) pe(mu )
Ver Ver

where B depends only on I' and y. From [Beardon, 1983 p.130] we have, as in
the proof of lemma 3.5.6, that

(% V) > Izz - Vy I2 + 2p,(Vy)
2, (Vy)

and so from the above

0(@9) < Bz 33 2°p, (Vo) (|7, — Vo |2 + 22, (Vy))* h(el")).
Ver
Writing Vy = v + vz, (with p,(Vy) = v), and assuming € < 44, we choose an
integer p satisfying 1/p < €/2 < 26 and partition the sum above as follows

i S 2p,(V) (s, — Vy |2+ 2p, (V)" h(e2¥Y)),
m=o r<‘;§<r+.y

Now

|z, = Vy |2+ 2p,(Vy) = | 5, — v — p, (V¥)z, | * + 2p, (V)
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== (VO)? + |u |2+ 2p,(Vy)

and so
Al =Vy 12+, (Vi) =22+ lu |2+ 22+ lu |2+ 2(p,(Vy) — 2/2)? — 2%/2
> 22+ |u 2.

From this it follows that

0$E) < B2 S N 2 p (Ve h(eY) (22 4 m2r)e
m=0 m’<}."§(ol:+l)’

= Bz¢/298 ,—2 3 1 Vylh (z1.Vy)
z 20(1 e VEP P (Vy) h(e )
" m’SHS(m-H)’

< B2 20 3 p (V)P k() T !
z 2, (Vy e" _—
ver meo(l+27tm?)

The second sum occurring here is bounded by an integral

f 12 2p\e dt

R (1 + 27%1°P)
which, with the substitution, uz = t?, is equal to

il f R 1 u P du
P 1+ u??®

The integral converges since 25 > 1/p, and we obtain

g:(zzyy) < Az¢8 2 Pn(Vy)‘h(e(”'"Vy))_
Ver

as required. O
We conclude the chapter with several consequences of theorems 3.5.5 and
3.5.7.

Theorem 3.5.8 If T is a non-elementary discrete group which diverges at its
critical exponent then the measures M, have no atomic part.

Proof. Suppose there is an atom at a parabolic vertex of rank k. By conjugation
we may as well suppose that I' acts in the upper half-space H and that this
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parabolic vertex is at 0o, Since I is of divergence type, the function A used in the
construction of the measure class M, is identically 1 and so we obtain from
theorem 3.5.5 that

9(2,9) < A0 3 p (V)
V:VyeD
However, this sum is over a system of coset representatives of I'/T ., — so by

lemma 3.5.2 there is a constant B independent of s (6<s <6+1) and z (2 1)
such that

9, (2;,9) < Bzkte—e

But the right hand side is bounded as s — §, and this clearly contradicts the fact
that T is of divergence type.

If an atom were to occur at a point not fixed by a parabolic element we
would proceed in exactly the same fashion using theorem 3.5.7 to deduce that
9,(z;,9) < B2*"®* — once again we have a contradiction with the fact that the
group is of divergence type, and the theorem is proved. O

Recall the definition of a bounded parabolic fixed point from section 2.7. We
prove the following.

Theorem 3.5.9 If ' is a non-elementary discrete group and § is a bounded
parabolic fixed point, then £ is not a point mass for the measures M,.

Proof. Conjugate so that I' preserves the upper half space and the bounded
parabolic fixed point is at infinity, Choose y in the upper half space and we first
show that, with D a convex fundamental domain for T, the set
{V(y): v GF}ﬂD is bounded. Since I' is non-elementary we may select two
limit points a, # neither of which is a parabolic fixed point. Choose w on the
geodesic joining @ to B and note that if the set above is unbounded then there
exists a sequence {V, } CT such that V,(w) — oo and V,(y)ED. Clearly, either
V,(a) = 00 or V,(B) — oo and all members of these sequences are limit points.
This clearly contradicts the definition of a bounded parabolic fixed point.

With the notation of theorem 3.5.5 we have

g:(zzvy) S Az""'“‘ 2 pn(Vy )a h(e(zl. Vy))'
V:VyeD

where k is the rank of the parabolic fixed point at co. From our work above we
know that

|z, - W] < M
for all V with Vy €D. Thus
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0.(@0y) SAMP e 5 p (Vy)fay — Vy P2 (1),
V:vyeD

But the right side is bounded by

B zk+c—a E e—‘(zl.Vy)h(e(zl.Vy))
V:VyeDb

for a constant B depending only on I" and y, and so
95(2;59) < B ¥ g/(z1,9).
From this we have
b (H) < B 24y, (H)
and hence
By (00) < C zE*e~? (3.5.5)

valid for all z > 1 and € sufficiently small. But, since 0o is a point mass we will
have

”’z.v P (zl 7m)

3
dp,, (00) p,(00) = [P(z—lpo)] Nz.(oo) =7 P, (00)-

(7% (00) =

This, in conjunction with (3.5.5), leads to §<k + ¢ —& and hence to 26<k — but
this contradicts lemma 3.5.4, and the theorem is proved. O

Recalling that a discrete group is geometrically finite if it possesses a finite
sided fundamental polyhedron, we note that the next result is an immediate
consequence of theorems 2.7.2, 3.5.3, and 3.5.9.

Theorem 3.5.10 (Sullivan) If T is a non-elementary, geometrically finite
group, then the measures M, have no atomic part.

The next two results are immediate corollaries of theorem 3.5.9.

Corollary 3.5.11  Let I be a discrete group acting in the unit ball B of R". If
£€E OB is a parabolic fixed point of rank k£ = n—1 then § is not an atom for the
measure class M,.

Corollary 3.5.12 If T is a Fuchsian group acting in the unit ball B of R?
then no parabolic fixed point is an atom for the measure class M,.

We next consider the possibility of atoms occurring at non-fixed points in
the case that the group is of convergence type. Note from theorem 1.2.5 and the
proof of lemma 3.5.2 (interpreted in the ball) that if 4, has an atom at £ and if
K., denotes the Euclidean radius of the horosphere at £ containing ~(0) then
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s (= K, ]’ -
_— 00 .
7€l K,
Using lemma 2.5.2, this is equivalent to saying that Y, h'(E)P < 00. Such a

7€T
point £ is certainly a Dirichlet point (see section 2.6), but more than this is true.

In particular, since the K, introduced above can accumulate only at 1, any
horoball at £ meets any orbit finitely often (Pommerenke [Pommerenke, 1976]
called such points "orispherical limit points"). We have proved

Theorem 3.5.13 Let I" be a non-elementary discrete group preserving B. If
the measure y, has an atom at £ and £ is not a parabolic fixed point, then any
horoball at € meets any orbit finitely often.

As an application of some of the ideas in this section we conclude with the
following result.

Theorem 3.5.14  Let I be a discrete group acting in the unit ball B and let A
be a Borel subset of JB such that for some, and hence every, z €B, u,(4) > 0.
If, further, u,(y(A)MA) =0 for every vEI, then the group converges at its
critical exponent.

Proof. Since yy is a finite measure we must have

Y p(v(4)) < o0
yeT

but,

Ko(WA)) = pyyo)A) = [, dti0)€) = [,

4Hy40)
—d—”;—](f)d Ho(€)

= [, POy (0).6 duo(€)

and we see that
T [, P(10),6)d () < oo.
7€l

Interchanging the order of summation and integration, the series

¥ P(2(0):f

7€T

must converge for almost every § €A (with respect to the measure pg). Since
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Ho(A )>0 we deduce that
¥ 1 =ho)P < oo

7€T

which is the required result. O

We have the following corollary of theorem 3.5.14.

Corollary 3.5.18  Let I' be a non-elementary discrete group acting in the unit
ball with Dirichlet region D, centered at a €B. We write ¢, = D, OB and
suppose that, for some z €B, p,(e,) > 0, then I' converges at its critical
exponent.

Proof. Suppose, under the hypothesis of the corollary, that I' diverges at the
critical exponent. Then by theorem 3.5.8 the measure u, has no atoms. We have
seen in the proof of theorem 2.6.4 that the set e, meets I-images of itself in a
countable set and thus u,(e,((e,)) =0 for every yEI. From theorem 3.5.14

we have convergence at the critical exponent and this contradiction completes the
proof. O



CHAPTER 4

Conformal Densities

4.1 Introduction

Recall from section 3.4 the metric d, defined on dB. This metric arises from the
Riemannian metric tensor G, () = P(z,£)*I defined on OB (which is regarded as
a smooth manifold of dimension n-1). For any z,2' € B

2
() = | P56
and the metrics d, and d,, are said to be conformally equivalent.
For a discrete group I' acting in the unit ball B we make the following

definition.

Definition A I-invariant conformal density of dimension « is a map o from the
collection of all metrics {G,:z €B} into the collection of positive finite measures
on OB such that, writing o, = o(G,),

1. o0, is supported on the limit set of I’

2. for z,2' € B, 0,,0,: are absolutely continuous with respect to each other
and the Radon-Nikodym derivative satisfies

[ﬂ ](E) _[rere

do,

P(z,8)

8. v*0, =0y, for yET.
The following result is an immediate consequence of these defining properties (see
the remark following theorem 3.4.4).
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Theorem 4.1.1 Let T' be a discrete group preserving B and o a I-invariant
conformal density of dimension @, then for E a Borel subset of 3B and 4 €T,

o, ('7(E)) = "’E hzl (E) Ia do, ().

The definition given above should look familiar — it is in fact the list of
properties satisfied by measures v, belonging to the class M, which was given at
the end of section 3.4. Defining a map v from metrics to measures by
UG(z)) = v, € M, (with the standard convention that for z,2' € B, v, v, are
corresponding members of the two classes M, ,M,:) we have the following result.

Theorem 4.1.2 Let I' be a discrete group with critical exponent & then the
map U defined above is a I-invariant conformal density of dimension &

One of our major concerns is with the existence and uniqueness of I-
invariant conformal densities. Specifically, we would like answers to the following
questions:

e Given I, for what positive real numbers & does a I-invariant conformal
density of dimension o exist?

o If a I-invariant conformal density of dimension « exists, is there another
conformal density of the same dimension which is not merely a multiple of
the first?

Complete answers to these questions are not known although the work of Sullivan
[Sullivan, 1984] does give answers for a large class of discrete groups. In
particular, we will see in section 4.6 that, for convex co-compact discrete groups,
the map v defined above is the only I-invariant conformal density of any
dimension. The importance of obtaining answers to these questions lies in the fact
that the existence of a conformal density has implications for the Hausdorff
dimension of the limit set of a discrete group, and that the uniqueness of
conformal densities has implications for the ergodic properties of the group. In
this chapter we will be following the work of Sullivan [Sullivan, 1984]. The
results presented here are his, our exposition is somewhat different.

In section 4.2 we establish a condition which is necessary and sufficient for a
conformal density of dimension o — if one exists — to be the unique conformal
density of that dimension. In section 4.3 we make a detailed study of the local
behavior of the measure class associated with a conformal density. In particular,
we show that the measure behaves roughly like an a-dimensional Hausdorff
measure on the conical limit set. More results on the behavior of the measure on
the conical limit set are given in section 4.4 — for example it is shown that T
always acts ergodically on the conical limit set with respect to the measure class of
a conformal density. In section 4.5 we consider the orbital counting function of a
discrete group and obtain an upper bound analogous to the estimate given in
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theorem 1.5.1. It is further shown that this bound has implications for the
existence of conformal densities of various dimensions. A study of conformal
densities for convex co-compact groups is given in section 4.6, and the main
results of the chapter are summarized in section 4.7.

4.2 Uniqueness

Let T' be a discrete group acting in B and suppose that for some o > 0 a I-
invariant conformal density of dimension o exists. We denote this density by o.
We say that I' is ergodic on OB with respect to the measure class defined by o if
whenever a Borel set A C OB is invariant under I then for one (and hence every)
z €B either 0,(A) =00r 0,(~A) =0.

In this section we prove the following result.

Theorem 4.2.1 Let T" be a discrete group acting in the unit ball B and, for
a > 0, suppose o is a [-invariant conformal density of dimension a. The
collection of all I-invariant conformal densities of dimension « is equal to the set
of non-zero constant multiples of o if and only if T is ergodic on 3B with respect
to the measure class defined by o.

Proof. Suppose first that I' is not ergodic on OB with respect to the measure
class defined by o, then there exists a Borel subset A of OB such that A is I-
invariant, and for all z €B, 0,(4) >0 and o,(~A) > 0. We note from
property 3 of a conformal density that 0,(A) = 0.,(,,)(A) for all YEI. Define a
new conformal density 7 by

mG,) =7, = azIA .
In other words, for any Borel set E, 7,(E) = 0,(A ME). Note that the measure
m, is concentrated on the limit set of I' (since o, is so concentrated). Select
z,2' € B and suppose m,(E) =0, then 0,(AME)=0 and so 0,(ANE)=0
because 0,,0,s are absolutely continuous with respect to each other. It follows
that 7, (E) =0 and we see that m,,7,/ are absolutely continuous with respect to

dm,
each other. We next compute the Radon-Nikodym derivative ———(&). In order

dm,
to do this we note that for any z €B the two measures 7,,0, on the space
(4,B(A)) (where B(A) is the collection of Borel subsets of A) are absolutely
continuous with respect to each other and the associated Radon-Nikodym

derivative is equal to one. Thus, for any Borel subset E of OB

NE doz’(f) =_':an [

This latter integral may be written in the form

dO'z/
ol [GLEAGE

Wzr(E)=0'zr(AﬂE)=L P
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PO oot (PO o [P0
fAnE P(z’s)]daz(f) fAnE P) dm,(§) = [, Pd) dm,(€).

dm, P(z,§)
a conformal density of dimension a. To check the third property we merely note
that if Y €I" and E is a Borel subset of 9B,

7, ((E)) = o, (%E)DA) =0, [W(E N4 )= 01"(:)(E ﬂA )= "1“(:;)(E)

and so y*m, = M -y,), for any vEI and z €B. Thus 7 is a I-invariant conformal
density of dimension o .

dm,: ] @
Thus z &) = [M] and the map 7 satisfies the first two properties of

For the converse we suppose that I is ergodic on OB with respect to the
measure class of 0. Let 7 be another conformal density of dimension a and note
that v = (0+m)/2 is also a conformal density of dimension a. The measures o,
and m, are both absolutely continuous with respect to v, and so the Radon-
do, dm,
dv, ' dv,
also both measurable (0,). We next show that, as functions on dB, these two
derivatives are I-invariant.

Nikodym derivatives exist and are measurable (v;). They are clearly

Choose £ €OB and, for ¢t > 0, let B(£,t) be the ball in 8B of Euclidean
radius ¢ centered at £&. From theorem 4.1.1

o WBE) _ L, b @*do.(n)
uDBEOL [ b (ldv, ()

and, using the continuity of }y,’ ()|, we may take the limit as ¢ — 0 to obtain

do, 0 do, )
de (’1( ) de (E *
Now do, [ dv, is measurable (0, ) and I-invariant. But the action of T is ergodic
on OB with respect to 0, and this clearly implies that the derivative is equal to a
non zero constant almost everywhere (0,). Similar comments apply to the
derivative dw, /dv, and so, from the properties of the Radon-Nikodym
derivative, dm, [ do, is equal almost everywhere (0,) to a positive constant.
This completes the proof of the theorem. O

4.3 Local Properties

For z €B and ¢ > 0 denote by A(z,c) the hyperbolic ball centered at x and of
radius ¢. If y is not a point of A(z,c) then denote by b(y:z,c) the projection of
Az,c) onto OB from y. Thus £€b(y:z,c) if and only if £€0B and the
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geodesic from y to £ intersects A(z,c). Note that this generalizes the notion of
shadows introduced in section 1.2 and used in section 2.4.

Lemma 4.3.1 With notation as above, the set b(y:z,c) is a ball in the d,
metric on 3B whose radius, r, is given by
tanh ¢ (1 — |z|?)1 = |y [?)

2 |yllz —yllz =9l

(where y* is the reflection of y in the unit ball), and whose center is the
projection of the point z on 9B from y.

tan r =

Proof. A conjugation by a Moebius transformation taking y to O shows that
b(y:z,c) is a ball in the d, metric centered at the projection of z from y. To
compute the radius in this metric we make the observation that r is the angle at
y between the geodesic through y and z and any geodesic from y tangent to

0A(z,c¢).

Figure 4.3.1

Let the point of tangency of such a geodesic be u, and we have a right angled
hyperbolic triangle. We may apply hyperbolic trigonometry to obtain [Beardon,
1983 p.147]
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tanh ¢

tan r = —————.
sinh (y,z)

The lemma now follows from the well known expressions for sinh((y,z)/2) and
cosh((v,r)/2) [Beardon, 1983 p.131/2]. O

We should remark that the formula given in lemma 4.3.1 is not valid for
y =0 (for 0 = o00). Taking a limit as y — O we see in this case that
tanh ¢(1 — |z[?)

2|z] '
Denoting the radius r by r(y:z,c) we have
tanh c(1 — |z |?)

2lz|

The following result gives much useful information on the local structure of a
conformal density.

tan r =

tan r(0:z,c) =

(4.3.1)

Theorem 4.3.2 Let T be a discrete group acting in B and o a I-invariant
conformal density of dimension o which is not a single atom. Select z € B, then
there exist positive constants a, A such that, provided ¢ is large enough, for all
_ except finitely many y€T,

. {b(z:1(2)ye )]
[r(z:(2)e )l

Proof. Let \ = (0,(0B) + 0,(n))/2 where 0,(n) is the largest point mass for o,
(obviously we take 0,(n) =0 if o, has no atomic part). Since o, is not a single
atom we have A > 0,(n). Suppose on a sequence {¢, } tending to zero we have
balls in OB of radius ¢, and of 0, mass at least A\ then, on a subsequence if
necessary, the centers of these balls converge to a point £ with 0,(£) > A This
contradiction shows that there exists ¢ > 0 such that if A is a ball in OB of d,
radius at most € then ¢, (A) <X < 0,(9B).

In proving the theorem we may as well suppose that £ = 0. Now choose ¢
so large that if (2,0) > ¢ then the set OB — b(2:0,¢) is contained in a ball of d,
radius equal to €. For the remainder of the proof ¢ is fixed at this value. If y€T
with (4(0),0) > ¢ (this will be true for all but finitely many Y€T), we set
& = 0y[b(+(0):0,¢)] and note from our remarks above that

§>0,(8B) =X > 0.
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~ 36 - b(& ;O,C)

Figure 4.3.2
Now
6 = 0p[b(1(0):0,¢)] = [ Ab(0:vY(0),c))] = ,1q[6(0:4"(0),¢)] (4.3.2)

since o is a conformal density. However, we also have, from the properties of a
conformal density of dimension o, that

do.-
o6 (0NN 0)e)) = [ﬂ](f)doo(f)

5(0:970),¢) do,
= [ POTH0),€)"doy(8). (4.3.3)
5(0:77Y(0),¢)

Our next task is to approximate the Poisson kernel appearing in the above
integral,

Lemma 4.3.3 With the above notation there exists a positive constant A
depending only on ¢ such that if £ € 5(0:77(0),c) then
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A - 2
oo < P(v10)¢) < T—Hol

Proof. Note that P(y7Y(0),6) =(1 — h™'(0)[») h~'(0) — £|~% and the upper

bound is trivial. To prove the lower bound we note that if £ € b(0:471(0),c ) then

tanh (1 — h™(©)f?)
zh~' )l

from (4.3.1). Thus, since (7~1(0),0) > ¢, we see that for a constant B, depending

only on ¢,

b™'0) — €1<1 = h'(0)l + r(0:v7}(0),c) <1 = b7 (O)| +

h™'0) — ¢l< B(1 = h™(0)])
which proves the lemma. O
Using this result in equation (4.3.3) we have, for constants a,,a, ,

T Ok S o0 0)e)

< ToiREE e O )

Now we use (4.3.2) to obtain, for positive constants as,a,,

0o[6(0:7~1(0),¢ )]

1= hbe

But, for hy~!(0)] close to one, we note from (4.3.1) that
1= h7Oh* = r@~(0)c)

and the proof of the theorem is complete. O

a3

We will be using this theorem to explore the local nature of the measure
class of a conformal density. The theorem is clearly saying — at least in a rough
sense — that the measure class is behaving somewhat like a Hausdorfi a-
dimensional measure but only in the neighborhood of limit points which lie in
b(0:471(0),¢) for infinitely many y€T.

4.4 The Conical Limit Set

In theorem 2.4.4 we showed that if the series

¥ - h)

7€T

converges then the conical limit set has zero (n-1}dimensional Lebesgue measure
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as a subset of OB. Our next result is the analogous statement for measures
derived from a conformal density.

Theorem 4.4.1 Let T be a discrete group acting in B and o a I-invariant
conformal density of dimension a. If

Y a-hol <o
v€er

then the conical limit set has zero o, - measure for any z € B.

Proof. This is a standard argument but we include the proof for the sake of
completeness. Writing I' = {v,:n =1,2,...} and choosing ¢ > 0 we find N such
that

S -hOlr<e
n >N

From theorem 4.3.2, using the constant a, introduced in the proof of that
theorem, we may find N! so that

3 0ofb(0:7,(0)se)] < agq€
n >N’
and so
% { U [6(0:,(0)e)]} < aqe
n >N
But, from the proof of theorem 2.4.8,
C=UJ N U %0,(0)e)
ce>0 N21 n >N
and so gy(C) < a4 €. This is true for every € > 0 and gy(C) = 0 as required. O

Our next result concerns the Hausdorff dimension of the conical limit set:
recall from section 1.1 the definition of Hausdorff o-dimensional measure A,.

Theorem 4.4.2 Let T’ be a discrete group acting in B and o a I-invariant
conformal density of dimension o. There exists a constant a such that if A is a
Borel subset of the conical limit set with 0,(4) > 0 then A,(4) < ao,(A).

Proof. Since 0,(A) > 0, almost every point (0,) of A is a density point of the
measure in the sense that for almost every a € A

. o,[B(a ,t)ﬂA]
o 0;[B(a,t)]

where B(a,t) denotes the ball with Euclidean center ¢ and Euclidean radius ¢ —
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see [Federer, 1969 p.158]. Thus, given § > 0, there is a subset A’ of A with
0,(A —A') < 6and a t; > Osuch that for all a €A’ and ¢t < ¢,

o, |B(a,t)NA
ZBlONA] S (4.4.1)
0, [B(a,t))
Now construct a cover of A’ by balls 5(0:4;(0),c) ¢ =1,2,.. such that

7(0:7;(0),¢) > 7(0:7;41(0),¢ ), 7(0:7,(0),¢) < € say, and for each ¢, the center of
b(0:7;41(0),¢) is outside the union

o
k=1

Note that this construction is possible because every conical limit point lies in

infinitely many balls 5(0:4(0),c). The balls with half the radii and the same
centers are disjoint. Denote this disjoint union by (1. Now

5 r(0i(0)e)* =2 5 [r(0;(0)e)/2)" (4.4.2)

$ $

and, by theorem 4.3.2, the right hand side above is at most a constant multiple of

0,(f1). However, the left side is at least Ag(A') and so AS(A') does not exceed

a 0,(f1). Now observe from (4.4.1) that

o'z(A') < o'z(A) _6.

1-6 — 1-6

Oz (A) -
1-6

() <

Combining these results we have that Af(A4') < e . Letting € — 0 we

obtain A,(4')<a0,(A), and letting 6 —0 we have A,(4)< a0, (A) as
required. O

Corollary 4.4.3 If a [-invariant conformal density of dimension & exists and
if d(C) denotes the Hausdorff dimension of the conical limit set then d(C) < &
and, in particular, we always have d(C) < 6 where § is the critical exponent of I

Proof. In the proof above we take A = C and then, without introducing density
points, we proceed as before to obtain A(C) < a og,(fl). But of course,
0,(Q7) <0,(0B) and we have A (C) < a 0,(0B) < 40o. It follows then that
d(C) < a. The last statement of the corollary is immediate since we know there
exists a &-dimensional conformal density. O

We will see later that for large classes of discrete groups we have also the
inequality bo,(A) < A,(A) and this, together with theorem 4.4.2, shows that o,
really does behave like a Hausdorff measure on the conical limit set.
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We now consider an ergodic question.

Theorem 4.4.4 Let I' be a non-elementary discrete group acting in B and o a
I-invariant conformal density of dimension a. If A is a [-invariant subset of C
then either

e 0,(A)=0 or

e 0,(A) =0,(0B).
Proof. We may as well take £ =0 and we remark that g, is not a single atom,
otherwise a single atom at £ implies ¥(§) = £ for every YE€I' and T’ would be

elementary. Suppose that gy(4) > 0 and let § be a density point for A. Thus
we have a sequence {7, !(0)} converging to £ in a cone and

9[b(0:7,'(0),¢ )4 ]
[ (0:7;7(0),c )]

Let X\ be the largest point mass for 6, and, arguing as in the proof of theorem
4.3.2, we see that givene > 0

Op[6(15(0):0,¢)] > 0y(OB) — XN — ¢ (4.4.4)

providing ¢ and n are large enough. Note that (v, (0):0,c) =, [6(0:7,;}(0),c))]
and so

(4.4.3)

G[5(2 (0):0,c)N4 ] - 0’1.“(0)[1’ (0:v,71(0),¢ NAl (4.4.5)
%[b (72 (0):0,¢ ) %7406 (0:7771(0),¢ )] o

where we have used the fact that A is [-invariant. The right hand side of (4.4.5)
may be written

I P((0)n)dog(n)
6(0:75(0),¢)NA

I P(%0)n)*dog(n)
5(0:7740),¢)

and this is equal to
I P (77 1(0),m)*d og(n)
8(0:7,70),¢) A’

I P(70)m)* doy(n)
5(0:970),¢)

We bound this quantity from below using the bounds on the Poisson kernel given
in lemma 4.3.3. We see that the right hand side of (4.4.5) is at least
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B ay[b(0:7, '(0),c )4’ ]
06 (0:7;(0),¢))

and in view of (4.4.3) we can bound this below by 1 — ¢ provided n is large
enough. Thus for n large enough, using (4.4.5),

olb (7 (0):0,¢)A] 2 (1 — €)0[b (7, (0):0,¢)].

Combining this with (4.4.4) and the fact that b(~,(0):0,c)A is a subset of A
we have

oo(A) 2 (1 —€){op (8B) — X — ¢]
letting € — 0 we obtain

If 0, has any atoms then it must have at least two and by (4.4.8) all except one of
them would lie in A. However, from theorem 3.5.3, a point mass cannot occur at
a conical limit point and so X = 0 in (4.4.8). This proves the theorem. O

This result is exactly what we need in order to apply theorem 4.2.1 on the
uniqueness of conformal densities of a given dimension. Suppose there is a I-
invariant conformal density of dimension & - call it o - and suppose further that
0,(C) > 0 then 0,(C) = 0,(9B) and I is ergodic on 3B. Thus by theorem 4.2.1
o is the unique conformal density of dimension a. Further, such a o can have no
atoms and the Poincaré series must diverge at the exponent o. Such divergence
clearly implies that a < é where 6 is the critical exponent of the group. It turns
out that § is the only dimension for which a conformal density can attach a
positive mass to C. In order to prove this we need an estimate on the orbital
counting function.

4.5 The Orbital Counting Function

We recall the orbital counting function N(r,z,y) defined in section 1.5 and as an
application of the properties of a conformal density we prove the following.

Theorem 4.5.1 Let T be a discrete group acting in B and o a I-invariant
conformal density of dimension ¢, then for z,y € B there exists a constant A
depending on I, on z, and on y such that, for r > r, say,

N(r,z,y) < Ae™ .

Proof. We may as well take £ =y =0 and, for integer k, consider the collection
b(0:4(0),cY for which £ —1/2 <(0,7(0)) < k +1/2. If £€EOB lies in such a
b(0:4(0),¢) then ~(0) must be within a hyperbolic distance ¢ of the geodesic
segment {\ : (0,\) € [k —1/2,k +1/2)}. This places 7(0) in a ball of radius
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1 + ¢ and any such ball contains at most M images of zero, where M depends
only on T' and ¢. It follows that the collection b(0:4(0),c) with
k —1/2 <(0,%0)) < k +1/2 covers any point £ €B with multiplicity m, and
0<m¢ <M. Thus

0[5 (0:1(0),¢)] < M 0y(8B). (4.5.1)
7 k=1/2 < (0(0)) < k+1/2

Define n(k) to be the cardinality of the set
{yerT: k-1/2 <(0(0)) < k+1/2}.

Using  theorem 4.3.2, inequality (4.5.1), . and the fact that if
k—1/2 <(0,7(0)) < k+1/2 then, for an absolute constant A, (1 — h(0)])* is
greater than Ae~*®, we obtain

n(k) Ae ** oy < M 0(OB)
where ag is the constant appearing in the proof of theorem 4.3.2. Thus
n(k) < B et (4.5.2)

for k large enough, and for a constant B depending on I'. If we form the sum of
terms n(1),n(2),...,n(R) say, we obtain N(R,0,0). Using (4.5.2) this is bounded
by a geometric progression whose sum is a constant multiple of ef2, O

Corollary 4.5.2 Let T be a discrete group acting in B with critical exponent
6. For a constant A depending on T, on z, and on y, and for r > r( say,
N(r,z,y) <A e
Proof. We merely observe that a [-invariant conformal density of dimension § is
known to exist. O
Noting that 6§ < n—1 we see that we always do at least as well as the

estimate given in theorem 1.5.1 — and better if § < n—1.

Corollary 4.5.3 Let T be a discrete group acting in B, and o a [-invariant
conformal density of dimension &, then o > §I).

Proof. The series 37 ¢~°(07©) may be written in terms of an integral as
7€T
R R ¢
lim [ e"#dN(t,00)= lim |N(R 0,0)e™*F + 5 [ e~ N(t,00)dt].
R - o0 R — o0
An easy calculation using corollary 4.5.2 shows that this limit is finite provided

s 2 a. Thus the series Y] e~207%) converges for s > o and it follows that
7€l
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a>é 0O

In the next section we restrict attention to a special class of groups - the
convex co-compact groups, and find that we can say much more in this case.

4.6 Convex Co-Compact Groups

The reader will recall the definitions of geometrically finite and convex co-compact
discrete groups given in section 1.4. The results of this section were first
developed by Sullivan [Sullivan, 1979] for convex co-compact groups and later
extended [Sullivan, 1984] to the more general geometrically finite case.

For geometrically finite groups the limit set comprises bounded parabolic
fixed points and conical limit points — theorem 2.7.2. From theorem 3.5.10 we
note that the measures of M, have no atomic part and thus assign full measure to
the conical limit set. From the results of the preceding sections we see that there
is only one I-invariant conformal density on a geometrically finite group. Its
dimension is § — the critical exponent of the group — and it has a measure class
coinciding with the measures p, constructed in chapter 3. Note that these
measures are unique (up to a multiple) and we shall speak throughout this
section of the conformal density and the measure u,.

We will be able to show, in the convex co-compact case, that the measure u,
is really Hausdorff &-dimensional measure and that the Hausdorff dimension of the
limit set is &, We further show that the orbital counting function behaves as one
would expect — namely like €% to within a bounded multiple. For convex co-
compact groups we are able to obtain a great deal of information on the local
structure of the measure y,. In order to do this we need to show that any ball in
OB centered at a limit point behaves like a projected ball b(0:4(0),¢) for some
~€T. The following little lemma is crucial.

Lemma 4.6.1 Let d > 0,¢ > d be given. Then there exist positive
constants a,,a,,) such that if z,y € B with (z,y) < d and min { (z,0),(y,0)} 2> X
then

r!O:y,c+d!<al and r(0:y,c—d) > a,

r(0:z,c) r(0:z,c)
where we are using the notation of section 4.3.
Proof. Using (4.3.1) we see that

tan r(O:y,c+d) _ tanh (c+d) 1 — lv|* |=|
tan r(0:z,c) tanhc 1 —|z[2 Tv[

We assume X is so large that tan r(O:z,c) < 2r(0:z,c) when min
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{(z,0),(y,0)} = \. It follows then that
r(0:y,c+d) < tanh (c+d) 1 —|y|

r(0:z,c) 2tanh ¢ 1 — |z}
Note that
11—yl _(+yhel0) - )y,
= 2¢(9) < 2
and with
a, = e tanh (c+d)

tanh ¢

the first part of the lemma is proved. The other half of the proof is entirely
similar. O

With the aid of this result we can show that any Euclidean ball in 9B
centered at a limit point £ for T has the property of theorem 4.3.2. We denote by
B(&,r) a Euclidean ball in OB which is centered at £ and has radius r.

Theorem 4.6.2 Let T be a convex co-compact group, then there exist
constants ¢,C,rq such that if £ is a limit point for I' and r < r( then

¢ < bolB (§,r)]

rb

< C

Proof. Let D be any fundamental region for C(A) which contains the origin —
actually we cannot assume this, even up to conjugation, but if the origin does not
belong to the convex hull of the limit set then we select some fundamental region
for C(A) and consider some domain D' of the form D' = {z: p(z,C(A)) < X}. If
X is chosen large enough, then the origin belongs to D!, and in the following
argument D may be replaced by D'. Let d be the non-Euclidean diameter of D.
Since £ is a limit point, the radius from 0 to £ is covered by I'-images of D. Fix a
value of ¢ ( > d) so large that ¢ — d satisfies the hypothesis of theorem 4.3.2 for
the constant ¢. Now construct a ball A (k&,c) centered on the radius to £ with
the property that b(0:k§,c) = B(§,r). This construction uniquely determines a
value of k. Now k& €~(D) for some YETI and (7(0),k§) < d from which it
follows that

A((0),c —d) C A(ké,c) C A(¥(0),c + d)

and so

b(0:4(0)ye — d) C b(0:k&c) C b(0:4(0),c + d).
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P 3 \3 (.0

Figure 4.6.1
Thus
b(01(0)c — d) C B(&r) C bOAO)e + d).
We obtain the following inequalities
o [B(0(0)e — d)] <t [BEr) S tio [B(0A(0)c +d)].  (46.1)

Choose € > 0 then for r small enough

l—e< <1+e

r
r(0:k&,c)
(Recall that r(0:k&,c) is the radius of 4(0:k€,c) = B(&,r) in the d metric - which
is locally the Euclidean metric). Thus dividing through (4.6.1) by r® we obtain

[}

Ho [BEEr)] _ #o [0(0A(0), + d)] | r(0:o(0),c + d) 1
r = r(0:4(0),c +d)° r(0:k&,c) (1—c¢f
with a similar lower bound. By theorem 4.3.2 and lemma 4.6.1 we see that
B(&,r
Ho | ﬁf ) <aa L :
T 1-¢

and the proof is complete. O

We have shown that any small ball centered at a limit point has u, measure

behaving like rf. Our proof of this fact made crucial use of the convex co-
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compact property. To obtain estimates of this type for other classes of groups is
one of the hardest problems in the theory.

Our next results show that the measure u, is a constant multiple of

Hausdorff 6-dimensional measure on the limit set of a convex co-compact group.

Theorem 4.6.3 Let I' be a convex co-compact group, there exists a constant b
(> 0) such that if A is a Borel subset of the limit set then

b (A) S AA).

oo
Proof. Let | B(;,r;) be any cover of A by balls centered on the limit set.

fm]

Then

[~

H(A) < 3 1, [B(&iori)]

fml

and so, by theorem 4.6.2
D,
may<c S (4.6.2)

f=-1
provided the balls all have radius r; < r,. Since (4.6.2) is true for any such cover

of A we see that u,(A) < C Af(A) and letting € — O we obtain the required
result, O

If we apply theorem 4.6.3 taking A to be the entire limit set A we see that
0 < by (A) < AdA)

and so the Hausdorff &dimensional measure of A is positive. Thus the Hausdorff
dimension of the limit set is at least 6, But, from corollary 4.4.3, we note that the
Hausdorff dimension of the conical limit set is at most é in the convex co-compact
case. Thus, for convex co-compact groups, the Hausdorfl dimension of the limit
set is equal to the exponent of convergence.

Theorem 4.6.4 Let T be a convex co-compact group. There exists a positive
constant k such that

Hy = kA5

Proof. For the measure 14y we have the transformation rule

to(HE) = [ 5 11" (&) [Pdp, (&)
where YET and § = §T) is the critical exponent. The Hausdorff édimensional
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measure also obeys the same transformation rule (in fact for any Moebius 7). We
form the new measure

M=[.l0+A6

and note that it also obeys the same transformation rule. Now py, is absolutely
continuous with respect to M and we form the Radon-Nikodym derivative

dio

dM

on the limit set. The function ¢ is clearly measurable (1) and I-invariant. The
limit set is made up entirely of conical limit points and T is ergodic (1) on the
conical limit set (theorem 4.4.4). It follows that ¢ is identically constant. To
complete the proof we need only show that this constant is neither 0 nor 1. This
means we must show that A; is neither 0 nor 400 on the limit set. Theorem 4.4.2
shows that A; is a finite measure on the limit set and theorem 4.6.3 shows that it
is not the zero measure, O

g=

With the convex co-compact hypothesis we can show that the orbital
counting function behaves essentially like e’R. The reader will recall an old
result of Tsuji [Tsuji, 1959 p.518] which states that for a Fuchsian group of finite
area,

ae”" < Nr0z)< Ae"

where A is a group constant and a depends on I' and on z. If one asks in
addition that the group have a compact fundamental region in the unit dise (it is
now convex co-compact) then a becomes a group constant. Note that for a
Fuchsian group of finite area § =1. The following result generalizes Tsuji’s
estimate.

Theorem 4.6.5 Let T be a convex co-compact group with critical exponent 4.
There exist positive constants A,r, depending only on I such that for any
z,yEB

N(rz,y)< A e forr> ro-

Further, there exist positive constants a,r, depending only on I such that for any
z,y €C(A)

N(r,z,y)2a e forr> ry.
Proof. Theorem 4.5.1 gives us an upper bound of the required type but with a

constant A depending on z and y. The reader will verify from the proof of
theorem 4.5.1 that the following lemma yields an A independent of z and y.
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Lemma 4.6.8 Let T be a convex co-compact group, fix R > 0 and for
t€C(A), y €EB set M(z,y) = card{ I{y)NA(z,R)} then M(z,y) is uniformly
bounded for all such z,y.

Proof. If the lemma is false then there exist sequences {z,}C C(A), {y,}CB
with M(z,,y,) = co. Let D be a (compact) fundamental region for C(A) and,
observing that M(+(z),y) = M(z,y) for any Y€ET, we may as well assume that
z, €D for every n. It follows then that A(z,,R) is, for every n, contained in a
fixed compact subset @ of B. It is clear that @ meets only a finite number of I-
images of D and only a finite number of components of B — C(A). This
contradicts our assertion that

card {I(y,)N@} — 00 as n — oo.
Thus we have the upper bound of the theorem. O

With D as in the proof of the lemma let d be its hyperbolic diameter.
Select z,y € D, partition the ball B into annuli,

U, ={z €B : 8dk <(z,2z) < 3d(k+1)}

and write n (k) for the number of YET with 4(y) EU,. If £ € A then the geodesic
joining z to £ is covered by I-images of D. Select z, on this geodesic with
(z,z;) = 3d(k+1/2) and suppose that z; €7,(D). Now (z;,7:(y)) < d and so
4:(y)E U,. Further, if ¢ > d then £§€b(z:v,(y),c). Select ¢ bigger than d and
so large that the hypothesis of theorem 4.3.2 is satisfied. Then we have proved
that the collection

{b(z(y)se) s A(y) EVL}

covers A with multiplicity at least one. This implies

Y wlb(zv(y)e)] 2 1o(9B)

7:y)EU:
and, by theorem 4.3.2 and lemma 4.6.1, there is a group constant A such that
A % r(en)e) > u(9B). (4.6.3)
T:y)EU:

We now use lemma 4.3.1 to obtain an upper bound for r(z:¥(y),c) when
~(y) € U,. This is a routine estimate which yields a constant B, depending only
on ¢, for which

r(z:y(y),c) < Be3%.

provided 4(y)€ U,. Use of this estimate in (4.6.3) yields, for a constant C,
n(k) 2 Ce3%% from which, by summing the appropriate geometric series,
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N(8dk,z,y) > C 3%
Thus, for a group constant b,
N(r,z,y)>b e
and this is the required result.0
4.7 Summary

Let us review the situation to date concerning I-invariant conformal densities. To
this end suppose I is a non-elementary discrete group acting in B and let & be the
critical exponent.

1. If there exists a I'-invariant conformal density of dimension o then a > §
(corollary 4.5.3).

2. There does exist a I-invariant conformal density of dimension § - this is the
density associated to the measures u, constructed in Chapter 3 (theorem
4.1.2).

3. If d(C) is the Hausdorff dimension of the conical limit set then d(C) < §é
(corollary 4.4.3).

4. The action of I" on C is ergodic with respect to the measure class of any
conformal density (theorem 4.4.4).

5. If there exists a I-invariant conformal density of dimension o with the
property that o,(C) > O then

e a = § (corollary 4.5.3 and theorem 4.4.4)

e 0 is the unique conformal density of dimension é - in particular the
measure classes M, constructed in Chapter 3 comprise a single
measure for each z € B (theorem 4.2.1)

e 0,(C) = 0,(0B) (theorem 4.4.4)

e I'is of divergence type (theorem 4.4.1).
6. If I'is geometrically finite then the properties of (5) above hold.
7. If T'is convex co-compact with critical exponent é then

« the Hausdorff dimension of the limit set is é

o the Hausdorfl 6-dimensional measure is, within a bounded multiple,
the p, measure constructed in chapter 3.
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o there is precisely one conformal density invariant by I - this is the
density p.

o I'is of divergence type.

¢ There exist positive constants a ,A4 ,r, depending only on I such that
forr > rq

ae? <N(rzy)<Ade™

It is interesting to observe that we have realized 6 in two distinct ways

e =inf {s€R*: T e(=) < oo},
~€T

e 6= inf {a : there exists a [-invariant conformal density of dimension o}.



CHAPTER 5

Hyperbolically Harmonic Functions

5.1 Introduction

We denote by A the Laplacian in R™®. A real valued function f defined in B
which satisfies the differential equation Af = 0 is said to be harmonic. In general
we will not be able to use such functions because if v is a Moebius transform
preserving B and f is harmonic in B, the function f o7y is usually not harmonic
(except when n =2). We will introduce an operator (the Laplace-Beltrami
operator) which leads to a class of functions invariant under composition with
Moebius transforms and which enjoys many of the properties of harmonic
functions. A full account of the derivation and properties of such functions is to
be found in the text of Ahlfors [Ahlfors, 1981] and in the text of Rodin and Sario
[Rodin and Sario, 1968]. In this section we summarize the results we need. For
the most part these are taken verbatim from Ahlfors’ text to which the reader is
referred for the proofs.

Definition The Laplace-Beltrami operator A, for the unit ball B of R"
equipped with the metric p is given by

(L= r??

A, =
2 4

1—r2 Or

A_}_2(11—2)r _Q_]

where r = |z|. The upper half-space version of this operator (also denoted A,) is
given by

A2 = .’L‘"Z A—

z, Oz,

n—28]

Definition A function f in B (or in H) which satisfies Ayf =0 is called
hyperbolically harmonic — henceforth abbreviated to h.h.
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This is the class of functions we are after. The crucial fact that this class is
invariant under composition with Moebius functions is proved in [Ahlfors, 1981
p.55]. In fact even more than this is true.

Theorem 5.1.1  For a function f in B (or in H), if 7 is a Moebius transform
preserving B (or H) then &,(f 07) = (A, f )on.

We note from the definition of A,, and the theorem above, that harmonic
functions remain harmonic when composed with a Moebius transform — provided
n =2

We next give some examples of h.h functions and consider first those which
depend only on r. A fairly straightforward calculation [Ahlfors, 1981 p.57] proves
the following.

Theorem §5.1.2 A function v depending only on r and hhin 0<e<r <1
is of the form

r — 2n-2
u(r)=a fc (l—t%dt+b

where @ and b are real constants.

We note that no such function can stay finite at r = 0. We may write the
normalized solution

g(r) = f:% dt (5.1.1)

and so for n =2, g(r)=—logr, and for n =3, g(r)=l-+r —2. In general we
r

r2—n

n—2
g(r)=0((1—r)""1) as r — 1. A further example of an h.h function is given by
the following result.

as r—0 and and

have the estimates (for n >2) g(r)~

Theorem 5.1.3  Suppose |§|=1and |z]| < 1 and set

1— |z

|z — €I

then (P(z,£))” is an eigenfunction for A, with eigenvalue a(a—n +1). In the
upper half-space model, the corresponding eigenfunction is z,”.

P(z,£) =
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Proof. Considering the upper half-space situation

Z,

Ayz,) = z"2 [A(zna) - :2 '8_2—(3:)]

=z,? [oz(oz—l):tc,,"'2 - Max,{“"

n

=afa—1)1,* —afn —2)z,° =a(e—n +1)z,*
n n n

as required. Now recall the map V from B to H defined in section 1.3. Note
that for y = (y,,¥9.-.,9, ) in B

[ V(y) ]n = ——Il y__l ey" ||22

and so P(y,e,)* is an cigenfunction for A, with eigenvalue a{a—n +1). Now
given any z € OB there exists a rotation 8 with Sz =¢,. However, it is obvious
that

P(y,z) =P(y,87Y(ea)) = P(Bye,) -

By theorem 5.1.1 we conclude that A, P(y,z)* =ofoo—n +1)P(y,z)*, and the
theorem is proved. O

The following result [Ahlfors, 1981 p.69] is exactly what one would expect.

Theorem 5.1.4  Suppose f is an L, function defined on S then the function

u(z) = ﬁ [ P& 1 (©)duw(E)
is h.h in B.

The function u defined in this theorem has the expected property with
respect to boundary approach [Ahlfors, 1981 p.69].

Theorem 5.1.5 Let f,u be given as in theorem 5.1.4 and suppose £ €S then,
for almost all (w) such & u(z) converges to f(£€) as z approaches § in a cone
|2 — &l < M = |=]).

As an immediate consequence of (1.3.2) and theorem 1.3.3 we have that

P(z,§) = P(x(z)&) 1v' (9] (6.1.2)
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for any Moebius ~ preserving B. Now if f and u are as in theorem 5.1.4 then,
using (5.1.2) we obtain

u(x(z)) = ﬁ [ P@O ! 1 (1E) du(e) (5.1.3)

and we note in particular that if f(Y(£)) = f (&) for almost every (w) §E€ S then
u(¥(z)) = ¢v(z). It is an immediate observation that if the function f is constant
almost everywhere then « is identically equal to this constant.

The Fatou theorem may be proved using the representation given in
theorem 5.1.4 exactly as is done for harmonic functions.

Theorem 5.1.6 Let u be a bounded h.h function in B. For almost every
£ES, tlimlu(tf) = f (£) exists and

u(z) = ﬁ [ P8 1(6) dw(®).

We also have the h.h version of Green’s formula. In order to state this it will be
convenient to replace all terms by their hyperbolic counterparts.

2%dz, - - - dz,
o volume element dV = ——~ ®
Q==
n—1
e area element do, 2" do

U= zpr

. Ov 1—|z]? Ov
« normal derivative = A

Oony, 2 on
—1z12
o gradient V, u= 1- s Vau
e Laplacian A, v=A48,v

With these notations we have [Ahlfors, 1981 p.62].

Theorem 5.1.7  Let u,v be real valued functions in B with continuous second
partials and D CB with smooth boundary then

8
ID v {vdV = ";D u ﬁdo‘h - ID V), vV, v) dV,.

The more common formula is as follows.
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Theorem 5.1.8  With «,v and D as in theorem 5.1.7

Ov Ou
fD(u Ajv — vAu)dV = LD(HW - v

aﬂh

We next wish to consider the Green’s function. Let T be a discrete group acting
in B and we write M(I") for the Hausdorff topological space B/I. A function on
M(T') can be viewed as the projection of a I-invariant function on B. Following
Abhlfors [Ahlfors, 1981 p.88] we define the Green’s function on M(I) as follows.

)doh.

Definition Let I' be a discrete group acting in the unit ball B and suppose a € B.
If there is a function G from B—I{a) to R such that

e G is h.h on B=I\a)
e Goy= G for any v€T
e G has the singularity given by (5.1.1) at

e G is the smallest positive function with these properties
then the Green’s function on M(I') with pole at the projection of a is defined to
be the projection of G.

The following result is proved in [Ahlfors, 1981 p.88].

Theorem 5.1.9  Let I' be a discrete group acting in the unit ball B then M(I)
has a Green’s function if ‘and only if ' converges at the exponent n—1.

It is customary, using the terminology of Riemann Surface theory, to say
that the quotient space M(I") belongs to the class Oy if it does not support a
Green’s function. Thus the previous theorem states that M(I') € Og if and only if
I diverges at the exponent n—1.

5.2 Harmonic Measure

We have seen that the Laplace-Beltrami operator is defined on M(I') and in fact
we can solve the Dirichlet problem for regular regions and continuous boundary
functions [Rodin and Sario, 1968 p.238].

Let {M,}§° be an exhaustion of M(I') with connected M —M,. For _each n
we let w,(z) be the continuous function on M(I) with w, |M,=0,
w, [MI) =M, =1, and w, h.h in M, — M, By the maximum principle,
W,4p S w, and thus lim w,(z) exists on M(I'), vanishes on M, and is h.h on

— n — 00
M(T') — My. This function is denoted w(z) and is referred to_as the harmonic
measure of the ideal boundary of M(I') with respect to M(I') — M.
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It is a well known result for Riemann Surfaces that the harmonic measure of
the ideal boundary is identically zero if and only if the surface does not have a
Green’s function. The proof of this fact [Ahlfors and Sario, 1980 p.204]
generalizes easily and we have the following.

Theorem §.2.1 Let T be a discrete group acting in the unit ball B then the
following are equivalent

o I' diverges at the exponent n—1
e M(I') has no Green’s function
e The harmonic measure of the ideal boundary of M(I) is identically zero.

Another classical theorem for Riemann surfaces, due to P.J. Myrberg, states that
if a surface has a non-trivial bounded harmonic function then it has a Green’s
function and again the proof generalizes easily [Ahlfors and Sario, 1960 p.204].

Theorem §.2.2 Let T be a discrete group acting in the unit ball B, if M(I)
has no Green’s function then any bounded h.h function on M(I'} reduces to a
constant.

The next result generalizes a theorem of Seidel [Seidel, 1935].

Theorem 5.2.3 Let T be a discrete group acting in the unit ball B. There
exists a measurable, I-invariant subset A of $ with w(4) > 0 and w(4) > 0 if
and only if M(I') has a bounded non-trivial h.h function.

Proof. Suppose first that a set A with the properties stated in the theorem
exists and set 1, to be the characteristic function of A defined on S. We define

u(z) = ﬁ [ (P& 14(6) dw(€)

which, by theorem 5.1.4 is h.h in B and, by theorem 5.1.5, is non-constant in B.
Next observe from (5.1.3) that » is I-invariant, and so we have a non trivial
bounded h.h function on M(I'). The reverse conclusion follows just as easily from
the theorems in section 5.1.

Corollary 5.2.4 Let T be a discrete group acting in the unit ball B. If T’
diverges at the exponent n—1 and if A is a measurable I-invariant subset of S
then either w(A) =0o0r w(A)=0.

In the terminology of the next chapter, groups which diverge at the
exponent n—1 act ergodically on the sphere at infinity.
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We conclude this section with a test for determining whether a group T’
diverges at the exponent n—1. This test generalizes the Euclidean metric test of
Laasonen for Riemann surfaces with no Green’s function [Sario and Nakai, 1970
p.330].

Theorem 5.2.5  Let I be a discrete group acting in the unit ball B and let D,
be the Dirichlet region for I centered at the origin. Set 6(r) = Do\{z: |z|=r}
for0< r < 1. If

1 Y T3}
fcudr = 00

w(¥r))

then I diverges at the exponent n —1.

Proof. Suppose that I' converges at the exponent n—1 then, from the results
above, the harmonic measure of the ideal boundary of M(I') is non-zero. To be
precise, if A(z,6) denotes a closed hyperbolic ball centered at z € B of radius §
then there exists a function &, defined in B, with the following properties :

1. A is continuous and bounded in B

2. h is invariant under T’

3. kishdhonB — |J A(0)9)

~€T
4. if ¢ € A(7(0),5), for some Y€ET, then A(z) =0.

For 0 < R <1 we write D(R)=DN{z:|z|< R} and D*(R) is the part of
D(R) which lies in {z:p(z,0)> 8. Now apply Green’s formula to the function
v =k in the domain D *(R) to obtain

f V2h Oh dA
D(R) (g

— |zPP)"2 av, = fov'(R)h Bn 1—-[zf)?

O(R)= (5.2.1)
where dA and dV, denote respectively the elements of Euclidean area and volume
at the point z € B. Note that % is zero on JA(0,5) and that » has equal and
Ok [ On has opposite values at equivalent boundary points. Therefore we have

Oh dA
O(R) = f'(R) hon (1—-RrY™ (5.2.2)
Using polar coordinates (see section 1.1) we obtain from (5.2.1)
R
V2h Ly - .
9(R)=f€ f«R)mr" Y(sin,)*~%- - -sinb,_,d0,d0, - - - db,_,dr

and so
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V2h

©'(R) = f«mm = f‘(“)m

Thus

o'(R) > fm[ ]m (5.2.3)

Using the Schwarz inequality we obtain from (5.2.2)

ORF < (1 =R [0 42 da f«R)[ ]F—W
and, from (5.2.3),
(1 —RY2OR) < ©'(R) f«n) h? dA.
Since & is bounded in B we have, for some constant M,
1-R*'2O(R)* < MO'(R)w(®R))

and we see that

R —
a=rr2 8'\R) . a1
A <wmf, orr = Me@ " em

and the right hand side is bounded by Gl(e) as R — 1. Thus if T converges at

the exponent n —1 the integral

R -
l_r)n 2 ,
[ my

remains bounded as R — 1 and the theorem is proved . O

We remark that this result has been used [Nicholls, 1981b] to establish the
existence of non geometrically finite Kleinian groups which diverge at the
exponent 2.

5.3 Eigenfunctions

In this section we consider briefly eigenfunctions of the operator A,. The
spectrum of this operator is currently the subject of intense investigation. We
shall do little more than touch on this important theory — the reader is referred
to Patterson [Patterson, 1987] for an account of the development of the theory
and for several further references.

Our starting point is theorem 5.1.3 in which we proved that (P (z,£))* is an
eigenfunction for A, with eigenvalue ofor—n +1). Now suppose that I is a
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discrete group preserving B and that o is a conformal density for I" of dimension
a If f is an L,(0,) function defined on S then we note that the function u
defined in B by

u(z) = .L'(P(z,f))" f(§) day(€) (6-3.1)

satisfies Ayu = o{a—n +1) u. Note that

u(z) = _£ (P(2,8))" [ (§)doy(§) = { (P(2,€)/P(0,€))" f (€) d op(€)

= _!;f (E) doz(&)

from the properties of a conformal density. It is now immediate, again from the
properties of a conformal density, that for yET

v(¥(z)) = _£ J(€)day. (&) = _L' f(€) da,(€).

In other words, the function « is invariant under I" provided f is. Summarizing
these results we have the following result.

Theorem 5.3.1 Let T' be a discrete group preserving B and ¢ a I[-invariant
conformal density of dimension o. If f is an L,(0p) function on S which is
invariant under I" and if « is defined by (5.3.1) then

e u is an eigenfunction of A, with eigenvalue o{a—n +1).

e u is invariant under T\

Now we specialize the definition (5.3.1) by taking f =1 and by considering the
conformal density p of dimension §I'). We write

du(z) = JS' P(2,€) dug(€) (5.3.2)

and note that ¢,(z) = u,(S). The following little estimate will be very useful to
us later on.

Lemma 5.3.2 With ¢, defined as above, and with s ¢n(7) denoting the
hyperbolic distance from the point z to the geodesic connecting £ and 7

[0 [ = 4 [ Te—nl 55 toos ses] 2 dmo(e) draln).
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Proof. From the definition,

(b)) = [ et |, [I l= | ]dﬂo(ﬂ)

EI
1 -_—
= [oxs i e am@amtn
Using theorem 1.2.1,
a=l=19 [°_ #
lz—€ lz—n] 1€—n |25[coshs€,,(z)]25
and, from the above,
2 46 1
BNt =4[ P s Okl

This is the required result. O

We conclude this section with the important result that, for a geometrically
finite group, the function ¢, is square integrable. Let I' be a geometrically finite
group acting on B. The Dirichlet region for I' centered at the origin will be
denoted D, and we intersect D, with the set of points which are at most a
hyperbolic distance of K from the convex hull of the limit set of ' — this
intersection will be written D(K). We need some more notation. For § n€ S
and K > 0 write D¢,(K) to be the intersection of D(0) with the set of points
distant at most K from the geodesic joining &£ and #. It is clear that

D(K)=|JD¢4(K)

where the union is taken over those pairs (&,7) with the property that the geodesic
joining & to 7 lies in the convex hull of the limit set.

Theorem 5.3.3 If I is a non-elementary geometrically finite group then, with
D(K) defined as above,

s [¢“(z)] dV < oo.

Proof. As a first step, we obtain an estimate on the size of ¢,(z) in a
neighborhood of a parabolic cusp. We may as well suppose that our group acts in
the upper half-space of R® and that oo is a parabolic cusp of rank k. Since the
group is assumed to be geometrically finite we know that the canonical measures
¢, have no atomic part — theorem 3.5.10. However, the limit set comprises
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conical limit points and parabolic fixed points — theorem 2.7.2 — and we deduce
that the conical limit set has full measure. By theorem 4.4.1 the group is of
divergence type and so, from the proof of theorem 3.5.9, if € > 0 is chosen,

p, (H) < CzF+e?

where H denotes the upper half-space and z, denotes the point (0,0,...,0,z). Thus,
with oo a parabolic cusp of rank k£ we have

bu(z,) < Chre b, (5.3.3)

Let us now estimate the integral

[iouarzav

over the piece of D (K ) near to a parabolic cusp of rank k. We assume the cusp is
at oo, Recall from lemma 3.5.4 that 6§ > k/2, and we choose € = 1/2(6—k /2).
With this choice of € in (5.3.3) and using theorem 2.7.3 we find that the integral
above is bounded by

o
A fM L~(1+-k/2) g,

which is finite. Our integral is thus bounded in a neighborhood of any parabolic
cusp and, obviously, bounded in any compact piece of D(K). This completes the
proof of the theorem. O



CHAPTER 6

The Sphere at Infinity

8.1 Introduction

Suppose {1 is a complete separable metric space with a measure defined on its
Borel subsets. Suppose further there is a group I' of maps of {2 onto itself which
are invertible, measurable (if A Cf{l is measurable and Y€ T then ~(4) is
measurable), and non-singular (if A C{Q is of measure zero and v € I then (A )is
of measure zero). Typically we will take 2 to be $ or SX S or SX §X S with
metric derived from the chordal metric on S and measure derived from w measure
on S. The group I of self maps will typically be a discrete group of Moebjus
transforms. In this section we gather some definitions and preliminary results.

For z €Ql the set {y(z): v € T} is the trajectory of z. If A CQ has the
property that 4(A)=A for every YE€T then A is invariant under I A
wandering set W for I' on {1 is a measurable subset of {1 with the property that
for any ¥ € I'—=1I the intersection '7(W)ﬂW is of measure zero. If there exists a
wandering set W of positive measure then the action of I' is dissipative,
otherwise the action is conservative. The action is said to be
completely dissipative if there exists a wandering set W of positive measure
such that, defining W* by

M S

then 1 — W' is of measure zero.

The group T is regionally transitive on {1 if there exists a point z €1
whose trajectory is dense in {l. The group is topometric transitive on 2 if the
set of points which do not have a dense trajectory is of zero measure in 1. The
group is ergodic on {1 if, whenever A is a measurable invariant subset of £},
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either A or its complement is of measure zero.

Theorem 6.1.1  The following are equivalent:
1. Tis regionally transitive on (L.
2. Every open set in £ which is invariant under I' is everywhere dense in {2.

3. If A, A’ are open sets in 2 then, for some v € T, 4(4 NA Y]

Proof. To prove that (1) implies (3) we let z be a point with dense trajectory
and note that if A, A are open, then for some 7, ~o €' we will have
M(2)EA, 1(z)EA. Tt follows that v,77(A)A " # O as required. The fact
that (3) implies (2) is trivial, so we only have to show that (2) implies (1). To
prove this let U,,U,,... be a base for the open sets in {1 and note that a point z
fails to have a dense trajectory if and only if z lies in some set A,, where

An = N Y8 = Uy).
~€T

The complement of A,, is the set | J¥(U,) which is open and I-invariant and
~€T
so, by part (2), is everywhere dense in §2. It follows that A, is nowhere dense. If

there is no point with a dense trajectory then {1 is a countable union of nowhere
dense subsets — which contradicts the Baire category theorem. O

Theorem 6.1.2  The following are equivalent:
1. T'is topometric transitive on {1

2. Every measurable subset of §1 which is of positive measure and is invariant
under I is everywhere dense in L

3. If M is a measurable subset of {1 which is of positive measure and if D is an
open subset of {1 then, for some v € I, y(M)D # .

Proof. To prove that (1) implies (3) we suppose that M is as given in (3) and
select £ €M with dense trajectory. If D is any open set then, for some
4y €T, 4(z)€D and (3) is proved. The fact that (3) implies (2) is trivial. So we
have only to prove that (2) implies (1). With A,, defined as in the proof of
theorem 6.1.1 we note that A,, is measurable and I-invariant. If, for some m,
Ay, is of positive measure then from (2) we see that A, MU, # (J — but this
contradicts the definition of A, . Thus each A, is of zero measure and we see
that the set of points which fail to have a dense trajectory is a set of measure
zero. Thus (1) is true and the proof of the theorem is complete. O
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Theorem 6.1.3  The following are equivalent.
1. Tis ergodic on Q.

2. If M, M’ are two measurable subsets of {1 each of positive measure then,
for some v € T, '7(M)ﬂM' is of positive measure.

Proof. This result follows easily from the fact that a countable union of
measurable sets is measurable. O

We remark that, as a consequence of these results, a group which is ergodic
on {1 must be both topometric transitive and conservative. Also, a group which is
topometric transitive must be regionally transitive.

For the remainder of this chapter we will be considering the action of
discrete Moebius groups on the unit sphere and products of the sphere with itself.

This action is defined as follows. For 4 a Moebius transform preserving B we
define

7(61’62/ R Ek) = (7(61)”7(62)""’7(Ek)) IE|I= 1, ¢+ =12,k

This gives us the action of a Moebius transform on the k-fold product
Sk) = §xSX S - XS (k factors).

Theorem 6.1.4  If a discrete group I is either regionally transitive, topometric
transitive, ergodic, or conservative in its action on S¥*1) then it possesses that
same property in its action on S(¥),

Proof. To prove the theorem as regards regional and topometric transitivity we
merely remark that if (§,,, . . ., &k4,) has a dense trajectory in S(+1) then
(€1:€s, - - -, &) clearly has a dense trajectory in S(*), Now suppose that I is not
ergodic on S%) and let A be a measurable set of positive measure invariant under
I" and whose complement has positive measure. Considering the set A X S we see
that T is not ergodic on S 1), Similarly, a wandering set on sk) gives rise to a
wandering set on S(**1) and the proof of the theorem is complete. O

6.2 Actionon S
Our first result is very elementary and characterizes regional and topometric
transitivity.
Theorem 6.2.1  The following are equivalent:
1. T'is topometric transitive on S.

2. Tis regionally transitiveon S.



The Sphere at Infinity Chapter 6 103

3. T'is of the first kind.

Proof. The fact that (1) implies (2) is immediate. To prove that (2) implies (3)
we note that if the trajectory of some point z is dense in S then each point of S
is a limit point for I which is therefore a group of the first kind. To show that
(3) implies (1) we note that for a group of the first kind the limit set is S and
that for each z €S the trajectory is dense in the limit set. O

Our next result (due to Seidel [Seidel, 1935] in dimension 2) characterizes
groups which are ergodic on § — this is just theorem 5.2.3.

Theorem 6.2.2 The group I is ergodic on S if and only if any bounded I-
invariant h.h function in B reduces to a constant.

In view of its importance for our later work, we restate corollary 5.2.4.

Theorem 6.2.3 If T'is a discrete group which diverges at the exponent n—1
then I'is ergodic on S.

We now consider the conservative and dissipative action of I' on the sphere.
The following two theorems are due to Sullivan [Sullivan, 1981]. We recall that
H denotes the set of horospherical limit points and it is invariant under T.

Clearly H is a measurable subset of S, and in fact I is conservative in its action
on H.

Theorem 6.2.4 The action of I' is conservative on H.

Proof. Suppose that H contains a wandering set A. It follows that

L@ dw < oo

~€T

and so

_':4 S hEPtdw < oo

~€T

Thus 33 h'(2)|*~? converges almost everywhere in A. However, from theorem
v€T
2.5.3 we note that this sum diverges for all z € H. It follows that A has measure

zero and the proof is complete. O

In its action on I}, I is dissipative. In fact more than this is true. We can
find a measurable subset of H which contains no two I-equivalent points and
with the further property that the union of its I-images comprises all of H with
the exception of a set of measure zero. Such a set is called a fundamental
region for H.
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Theorem 6.2.5  There is a fundamental region for the group action on H.

Proof. Choose ¢ €B not fixed by any element of I' and, writing D, for the
Dirichlet region centered at a, we set ¢, = dD;(MS. As in the proof of theorem
2.6.4 we see that for any v € I the set e, (Y¥(e,) is countable. Thus we may find
a subset e, of e, which contains no two I“equivalent points and which differs
from e, by a countable set. The set | J (e, covers the Dirichlet set D (except

~€T -
possibly for a set of measure zero) and thus also covers H except for a set of

measure zero (theorem 2.6.6). We have shown that e, is a fundamental region for
the action of I' on H as required. O

The construction given in the last theorem can be realized geometrically as
follows. Given a € B the set e, has the following property. The point £€ S lies
in ¢, if and only if the closed horoball at & through a¢ meets the orbit of a
precisely in a. Taking a to be the origin (which we assume is not a fixed point)
we note that such a horoball meets the orbit of 0 precisely in 0 if and only if all
the group images of the bounding horosphere (except under the identity
transform) have strictly smaller radius. We recall the formula for the radius of an
image horosphere given after theorem 2.6.3 and we have the following result.

Theorem 6.2.8  For a discrete group I' the set
{€es: h'@l<1 all yeT -1}

is a fundamental region for the action of T on H— provided the origin is not an
elliptic fixed point.

If the origin is an elliptic fixed point then, for any < in the stabilizer of 0
and any £€€S, |4'(€)| =1 (from lemma 1.3.1), and so the set given in theorem
6.2.6 is empty. The way to achieve a fundamental region in this case is to start
with the set {£€S: |y’ (€)] <1 all YET —stab(0)} and intersect this with a
fundamental domain for the action of the stabilizer of O on S.

We generalize a definition of Pommerenke [Pommerenke, 1976] to n
dimensions and say that a group I'is of accessible type if for some 8 > O there
exists a measurable set A CS containing no two I-equivalent points such that

Y w(4)) = 8

v€T
The group is of fully accessible type if the above condition is satisfied with
B = w(S). We see then that I is of accessible type if and only if w(H) > 0 and

is of fully accessible type if and only if w(I}) = w(S). Summarizing some of
these results we have
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Theorem 6.2.7 For a discrete group I the following are equivalent.

T is of fully accessible type.

w(H)=0.

{& h' ()l <1 all y€T —1I} is afundamental region for 'on S.
{h'@©|:~€T } accumulates only at zero for almost every §E€ S.

Y b ©I* < oofor almost every £€S.
~€T

Rl o\ S

We conclude this section by mentioning two examples. The first was given by
Hopf [Hopf, 1939 p.275], who constructed a Fuchsian group of the first kind for
which 3Dy meets S in a set of positive measure. This group then is topometric
transitive (theorem 6.2.1) but is not ergodic since it is not conservative (theorem
6.2.5). Hopf’s construction will generalize easily to higher dimensions.

The second example (again in dimension 2) is due to Pommerenke
[Pommerenke, 1976] who finds a Fuchsian group for which the Dirichlet set D has
zero measure and for which there exists a non-constant bounded automorphic
function. Since D has zero measure it follows that H has full measure (theorem
2.6.6) and theorem 6.2.4 shows that I is conservative on S. The real part of the
automorphic function is a bounded, non-constant, I-invariant function harmonic
in B. By theorem 6.2.2, I' is not ergodic on S.

8.3 Actionon S XS

We start by characterizing regional transitivity.

Theorem 6.3.1 The discrete group I is regionally transitive in its action on
SX S if and only if T is of the first kind.

Proof. If T' is of the first kind then, by theorem 2.2.2, there exists a line
transitive point, say &, in §. The images of any geodesic ending at § are dense in
the set of all geodesics and so in particular I(§,—£) is dense in $X S. This proves
that I is regionally transitive on $X S.

For the converse, if there exists a point (£,7) of $X S whose I-images are
dense in $X S then either § or % is a line transitive point. Thus T} # (/J and by
theorem 2.3.3, I' is of the first kind. O

The following result, due to Sullivan [Sullivan, 1981], characterizes the
conservative and dissipative pieces of the group action on SX S.

Theorem 6.8.2  For the discrete group r acting on SX S the dissipative piece
of the action is precisely the set C XC where C denotes the complement of C' in
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S. Furthermore the set
{emesxs: h' @' (ml<1 for al yET —1I}

is a fundamental region for the group action on C XC — provided the origin is
not an elliptic fixed point.

Proof. Suppose (§,7), £ # 7, belongs to C Xé’ and for 4 € I’ we note that
1 - ho)P)?
bt @' ()l = ( (6.3.1)
I = YO |n — (o)
from theorem 1.3.4. Since &, are not conical limit points the two sets of reals
I PN 13 I PN 13
I€ — v~ %0)] In —~v0)

each accumulate only at zero. Now for any 7, either |€ — 4~1(0)| > 1/2|€ — n|or
In = 471(0)] > 1/2|¢ — ] and so from (6.3.1)

1- b ]2 [1 — b~ ]2]
o < et |[etne), (Lo
From (6.3.2) we note that there exists 4o €I for which the quantity b’ (§)|h’ )l

has a maximum. The same 7, maximizes {h(§) — 7(n)|: ¥ € [}. In other words,
with & = (£) and 1o = (n),

1€0 = 10l = h(&) — ~(no)l
for all ¥ € T and this is equivalent to by’ (&)lh’ (7o)l < 1 — by 1.3.2. We write
A={Emesxs:h'(@h'ml<1 foral yeT -1}

and note that if (§,1) and (&;,7,) are equivalent then they cannot both be in A for
that would imply |€ — 5| > |€,— ol and |& — mo|l > 1€ — nl. Our construction
above has shown that every (&) is equivalent to a (§,7,) except in the following
cases:

1. £&=n
2. E€CornecC
3. h@©lh'@|=1for somey €T —1I.

Clearly (1) and (3) are true only on a set of measure zero and we have proved that
A is a fundamental region for the group action on C XC. Now suppose
W C8X S is a wandering set. Clearly
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Y, measure(y(W)) < oo
~€T

and so
I = (b @ 1) dw(@dwin < o
7€

It follows that for almost every (§,n) € W,

Er [h'(&)lh'(n)l]"“ < oo. (6.3.3)
Y€

Now if either £ or 7 is a conical limit point then we may use (6.3.1) and observe
that there exists € > 0 and a sequence {y,} C T on which K’ (&)lh' (n)l > € .
Thus, in view of (6.3.3), any wandering set W must be a subset of C XC. This
completes the proof of the theorem. O

Collecting some results from this section and the previous chapter we have
the next result.

Theorem 6.3.3 Let I' be a discrete group acting in B. The following are
equivalent.

I" diverges at the exponent n—1.

w(C) = w(S).

1

2

3. T'is conservative on $X S.

4. M(T') has no Green’s function.
5

The harmonic measure of the ideal boundary of M(I) is identically zero.

Proof. The equivalence of (1),(4), and (5) is theorem 5.2.1. The equivalence of
(2) and (3) follows immediately from theorem 6.3.2 above. The fact that (2)
implies (1) is theorem 2.4.4 and so it remains only to prove that (1) implies (2).
Suppose that T' diverges at the exponent n—1. Note from theorem 2.4.6 that
w(C) > 0 and so, since C is a I-invariant subset of S, w(C) = w(S) (s
ergodic on S by theorem 6.2.3). O

In his 1939 treatise [Hopf, 1939 p.281] Hopf related the ergodicity of T' on
SX S to the existence or otherwise of bounded two variable functions, harmonic
in each variable, which are invariant under I' (in dimension 2). The results
generalize to higher dimensions when we consider h.h functions. We outline the
ideas below.

Suppose I' is not ergodic on SX S and let A be a measurable I-invariant
subset of $X S which is of positive measure and whose complement has positive
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measure. Writing 1, for the characteristic function of A we define a function u
on BX B by

n—1
1 A-lzP) (1-1yP)
u(zy) = — 14 (&m)dw (§)dw (n).
w(S) Joxs ls —¢F |y —aF
It is not difficult to show that this function is I-invariant, h.h in each variable
and bounded. It can be shown (see [Tsuji, 1959 p.140] for the proof in two
dimensions) that u(z,y) has radial limits almost everywhere equal to 1,4 (§,n) —
thus «(z,y ) is non constant.

Now suppose there exists a I-invariant, bounded, non constant function in
BX B which is h.h in each variable. Call this function «. It can be shown (see
[Tsuji, 1959 p.142] for the proof in two dimensions) that « has radial limits (say
u(&,n) almost everywhere and that

n—1

1 Q=lzPa-1vP

u(z,y) = ——— v (&n)dw (§)dw (n).
w(SY fs” lz —€P |y =l ’

Since u is non constant in BX B, u is not constant almost everywhere on SX S,

it is also I-invariant and so for any « the set

Ua = {(E,ﬂ)i “(E,Tl) > a}

is a measurable, [-invariant subset of $X §. Clearly for some a both U, and its
complement have positive measure. Thus I' is not ergodic on $X S and we have
proved the following result.

Theorem 6.3.4 Let I' be a discrete group acting in B then I' is ergodic on
SX S if and only if every I-invariant, bounded function on B X B which is h.h in
each variable reduces to a constant.

It is clear that if T is ergodic on $X S then it must also be conservative in
its action. Thus ergodicity implies all of the five properties given in theorem
6.3.3. Perhaps the most important result in the theory is to the effect that
ergodicity is equivalent to these five properties. This result, due to Hopf [Hopf,
1939 p.280] and Tsuji [Tsuji, 1959 p.530] in dimension two, and to Sullivan
[Sullivan, 1981] in higher dimensions, is stated below. We will not be in a
position to prove this result for some time yet.

Theorem 6.3.5 Let I' be a discrete group acting in B. I'is ergodic on X §
if and only if ' diverges at the exponent n—1.

Considering theorem 6.3.3 we note that if the quotient space M(I'} does not
have a Green’s function then I' diverges at the exponent n—1. This in turn
implies that I' is ergodic on S (theorem 6.2.3) and so M (I} does not support a
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bounded, non constant, h.h function. Using the terminology of Riemann surface
theory we have arrived at the generalization of Myrberg’s theorem which states
that OgCOypg. The opposite inclusion is known to be false (for Riemann surfaces
— see [Ahlfors and Sario, 1960 p.256]) and this shows in general that a group I’
can be ergodic in its action on S but not ergodic on X S.

How about topometric transitivity? From the proof of theorem 6.3.1 it is
easily seen that T is topometric transitive on $X S if and only if w(T}) = w(S)
— thus topometric transitivity certainly implies that w(C) = w(S) and hence
divergence at the exponent n—1. From theorem 6.3.5 we see that the converse is
also true. Putting these results together with theorems 6.3.3, 6.3.4, and 6.3.5 we
have the following.

Theorem 6.3.6 Let T be a discrete group acting in B. The following are
equivalent.
o I’ diverges at the exponent n—1.

w(C) = w(S).

¢ I'is conservative on SX S.

e M(T) has no Green’s function.

e The harmonic measure of the ideal boundary of M(I') is identically zero.
o I'is ergodic on $X S.

o Every I-invariant, bounded function on BX B which is h.h in each variable
reduces to a constant.

o I'is topometric transitive on $X S.
6.4 Action on Other Products

To investigate the action of I' on SX §X S we need the following lemma. The
proof is straightforward and is omitted.

Lemma 6.4.1 Suppose I' is a discrete group acting in B and that &7 are
distinct points of S. Suppose further that on a sequence {y,} of distinct
transforms of I" v, (§) converges to o and that v, (n) converges to B then, possibly
on a subsequence, v, (0) converges either to & or to S.

In dimension two Tsuji [Tsuji, 1959 p.541] showed that any discrete group
fails to be ergodic in its action on §X §X §. We can prove much more than this.

Theorem 6.4.2 Let T be a discrete group acting in B then I is not regionally
transitive on SX §X §.
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Proof. Suppose z,,2,,z3 are three distinct points of S and {v,} is a sequence of
transforms of I. If 7, (2,),7, (22):7, (23) converge to a, B, 6 respectively then we
see from lemma 6.4.1 that o, 8, 6§ cannot be distinct. Thus no point of SX X S
has a dense I orbit. O

In view of this the following result is not too unexpected.
Theorem 6.4.3 If T is a discrete group acting in B then I is completely
dissipative in its action on X $X S. Furthermore the set
{(21,22:25) €SX SX S : b (z))lh (z2) ' (z5)| < 1 for all yET -1}

is a fundamental region for the group action on $X §X S — provided the origin
is not an elliptic fixed point.

Proof. For any triple (z),25,23) €ESX $X S the set
{h(z1) = A22)lh(z1 — A23)Ih(z0) — ¥(za)|: vE T}

is a countable set of non negative reals which, from the proof of theorem 6.4.2,
accumulates only at zero. Thus the set has a finite attained maximum. Now
from (1.3.2) we see that the set A defined by

A ={(21,2,23) : .h(zl) —2,) "'7(21) = (z3) "'7(22) - '7(z3)|
< lzy = zllz) = z3ll25 — 23] for all YET -1}
is the same as the set

{(21y22,23) €SX SX S : h' ()l (z2)lh' (25)| < 1 for all yET - I}.

Our remarks above show that each triple (z,,25,25) of SX $X S has a group
image in A — unless it belongs to the set of zero measure for which
h! (z) b’ (z)lh! (25)|=1 for some vy €T —I. Clearly, from the definition
above, A is measurable and contains no two I-equivalent points. This completes
the proof of the theorem. O

Corollary 6.4.4 If I is a discrete group acting in B then the series
n—-1
S (b ol Gl )
~v€T
converges for almost every triple (21,29,23) ESX SX S.

Proof. The set A defined in the proof of theorem 6.4.3 is of positive measure
and has I' images no two of which overlap thus
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Y, measure (Y(A)) < oo
~v€T

and from this follows the convergence of the integral

I, = (0 ol @l o)™ duey)du(zg)do (2.
7€T

-1
The series ¥ [h' ()b ()b’ (z3)|]" thus converges almost everywhere in
7€T
A and the corollary follows immediately. O

We now consider the question of ergodicity. Either one of the two theorems
6.4.2.or 6.4.3 shows that no discrete group is ergodic in its action on SX §X S.
However, it is possible to show, in the special case n =2 that even the full
Moebius group is not ergodic in its action on SX SX S.

Theorem 6.4.5 In dimension 2 there exists a subset A of §X §X S which
has positive measure, whose complement has positive measure and which is
invariant under the full Moebius group.

Proof. Define A as the set of triples (z,29,23) With 2z distinct and positively
oriented around the unit circle. Similarly, A* is the set of distinct triples
negatively oriented around the circle. A and A * are disjoint measurable subsets
of SX SX S each of which has positive measure (allow each z; to move over a
suitably small arc) and each of which is invariant under all Moebius transforms

preserving the unit disc. O

Theorem 6.4.5 certainly fails in higher dimensions. To see this recall that if
(21p205%3) » (W, wows) are two points of CXCXC there exists a Moebius
transform 7 of C such that 4(%) = w; , § =1,2,3. Now the Poincaré extension
4 of 4 is a Moebius transform of R?® which preserves the upper half-space and
such that :1(z,~) =w; ,¢ =1,2,3. Conjugating to the unit ball we see that in
dimension three the full Moebius group acts ergodically on X SX S and so no
set A as described in theorem 6.4.5 can exist.

Theorem 6.4.6  In any dimension the following are true.

1. The full Moebius group is not regionally transitive on SX SX SX S

2. There is a subset A of SX §X §X § which is of positive measure, whose
complement is of positive measure, and which is invariant under the full
Moebius group.

Proof. (1) follows trivially from the invariance and continuity of the cross ratio
defined in section 1.3. To prove (2) simply define



112 section 6.4

A = {(z1,20,23,20) 1 7 # 2;,] #1532 €S, J =1,2,3,4 and |2),29,25,24]| < 1}

and the result follows immediately. O



CHAPTER 7

Elementary Ergodic Theory

7.1 Introduction

In this chapter we develop, in a general setting, the ergodic theorems which we
will need in order to study certain flows on the quotient space of a discrete group.
In this introductory section we state, without proof, three classical ergodic
theorems and use these in the next section to develop the particular results needed
for our applications. The proofs of the results given in this section can be found
in many texts on ergodic theory — for example [Cornfeld, Fomin, and Sinai,
1982], [Nemytskii and Stepanov, 1960], and [Walters, 1982]. The section
concludes with the statement and proof of a result of Hopf.

The general setting is a sigma finite measure space (£2,B,u) on which acts a
measure preserving transform T. For a real valued function f defined on 2 we
consider the sequence f, defined by

f2@) = L5 1)), (7.1.0)

j=0
We begin with Von Neumann’s mean ergodic theorem — see {Walters, 1982 p.36].
Theorem 7.1.1 Let 1<p <oo, if f EL?() there exists f ' €L?() with
f*(z) = f*(T(x)) for almost every z €Q and

Wfw=1°N, = 0 as n — o0
The next result is Birkhoff’s individual ergodic theorem — see [Walters, 1982
p-34].

Theorem 7.1.2  If f €LY) there exists f * €LY with f *(z) = [*(T(z))
for almost every z €1 and
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fa(@) = [*(s) @5 n =00
for almost every £ €0 Further, if u4(f)) < oo, then
L1 dp = [ fdu

Our third result, which is used in the proof of Birkhoff’s theorem, is called the
maximal ergodic theorem — see [Walters, 1982 p.37].

Theorem 7.1.3 If f GLl(ﬂ), let E be the set of points z €Q) for which at
least one of the sums

F@)+ [(TE)+(TX)+ - +[(T"(2))
is non negative, then IE fdu2>0.

An important generalization of the Birkhoff theorem was derived by E. Hopf
[Hopf, 1937]. We conclude this section by stating and proving this result,

Theorem 7. l 4 Suppose f,g €L() with ¢ > 0 and that for almost every
z €11, lim 2 9(T7(z)) = oo. Then the sequence

n —+ 00 J - 0
-1

["z':‘ f(Tf(z))] [z ¢(T9(2))
J J

P

converges almost everywhere to a measurable function ¢(z). The function ¢ is
invariant under T, the function ¢g¢ is integrable, and for every bounded
measurable function A invariant under T,

[odh dp = [ fhdp

Note that if u(fl) < oo we may take g =k =1 in this theorem and recover
Birkhoff’s theorem (in the finite measure case).

Proof. For real numbers a,b with a < b let Y(a,b) be the set of z €2 with

Y 1 (Ti) Y1)
hmmfl—o———— <ae<b< lzmsup—o———
now W 9(T7 (2)) "o Y (i)

j=0 Jj=0

Clearly Y (a,b) is measurable and, considering
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T 1T @)

" i=o Pl B 1C)
B /(Ti@E) T «(TiE) X e(TiE) D e(TiE)
J=1 - j=0 J=0 J =0
X"J 9(T7(z)) 1+ _"I(T"(’.)) -— "@)_
i-t T o(TiE) % o(T4@)

J=0 j=0

we see that Y(a,b) is T-invariant. Now note that
n~1 X .
Y [f(T/(=) —bg(T'(z))] 20
j=0

if and only if

n—1 .

T [(Ti(e)

iZ0 . >

n—1 3 -

3 9(T(z))

j=0
which is true almost everywhere in Y(a,b) for some n. We appeal to theorem
7.1.3 with Q replaced by Y(a,b) and f replaced by f — bg to see that

fy(a,b) f —bgdp > 0.

Similarly,

f,,(a,b)ay —fdp 20

and so
(e =b) f)’(a,b) gdu 2 0.

Since ¢ < b and g > O we have y[Y(a,b)] =0. Applying this to all pairs of
rationals with ¢ < & we have proved that the limit

T 1(Ti@)

j=0

Y o(Ti(2)

J=0

lim
f =+ 00

exists almost everywhere. The limit function ¢(z) is clearly measurable and is
T-invariant for the same reason that Y(a,b) is.

If ¢ > a we can apply the maximal ergodic theorem to f — g(a — €) and
obtain L fdu>a L gdp. Similarly, if ¢ <¥b everywhere then
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b L gdu > L f du. Now for integers k,n define
X(kn) = {o : k/2" < d(a) < (k+1)/2")
which is a measurable, T-invariant subset of {. Replacing 2 by X (k,n) in the
maximal ergodic theorem we see from our remarks above that
k_z_?fxu,n)gd“ = fX(k,n)f dp 2 2Lnfxu,n)gd“‘
Trivially,

k+1 k
9t fX(k_n) 9 d”’ 2 fX(k,n) g¢d”’ 2 2_" fx(k’")

gdp

and so
-1
2”

Summing over k we obtain

1
LTdu - L,gduiul < 2—,,L,ydu,

n

1
fxuc,n)gd“ S hvamy ! d“_fxu,n)g‘i’d“ < 2_IX(k,n)gdu“

and letting n — oo we have proved that

Lf du=Lg¢du. (7.1.2)
Now with A as given in the theorem, we simply set f, =hAf, note that

"z_:; / I(Tj(z)) = h(z) "2_:; f (Tj(-’”)) and appeal to (7.1.2) to obtain
j= j=

Lfhdp = [gdhdp
as required. O

7.2 The Continuous Case

In the previous section we considered the action of powers of a measure preserving
transformation on a measure space. We now consider the situation of a
continuous flow defined on a space. The general setting is a separable, complete
metric space (£2,d) which is equipped with a o - finite measure u on its Borel
subsets. We further assume that {1 is locally compact and that the measure of
any compact subset of {1 is finite,

A fiow on 1is a map 7: X R — {1 with the following four properties:
1. n(z,0) ==z for all z €L
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2. w(m(z,s),t) = m(z,t+s) all z €2 and all ¢,s real.
3. mis continuous.

4. For any t €ER and A a measurable subset of §, (A ,t) is measurable and

WA 1) = w(A).
We will usually write

m(z,8) = T,(z)
and make several definitions as follows.

Given z€f{l the trajectory of z, written C,, is defined by
C,={Ti(z):tER}. T ACQand T;(A)=A for all t ER then we say that
A is invariant under the flow. Given z €1 and E C{1 then z is recurrent
with respect to E if T;(z) EE for a sequence of ¢ tending to co. Our first result
is the Poincaré recurrence theorem — see [Walters, 1982 p.26].

Theorem 7.2.1  Suppose p(fl) < oo and A C{ is measurable with u(4) > 0,
then z is recurrent with respect to A for almost all z € A.

Proof. Define T : Q2 — by T(z) = T,(z) and let A CQl be measurable.
Define

F=ANT'X -A)NOT*X —-A)"

which is clearly a measurable subset of {1 and comprises those points of ‘A which
never return to A under iterates of T. Now if 2z €F then none of the points
T(z),T *z),... belong to F and so F is disjoint from T*(F) for all positive n. It
follows that the sets F,T(F),.. are pairwise disjoint since
T"(F)nT""’"(F) = T"(FnT"(F)). Since T is measure preserving and X has
finite measure we see that u(F) =0. For integer n let F, be the set of points of
A which never return to A under iterates of T* — then, by our argument above,
WF,)=0. If €A — [F | JF,|J...] then T"(z)EA for some positive integer n
since r €A — F,. Similarly, since z€A — F,, it follows that T"'(z)GA for
some positive integer k. We have shown that for almost all z€A , T*(z)€EA
for infinitely many values of n. Noting that T* = T, the theorem is proved. O

The flow T, on 1 is said to be regionally transitive if for some z €{}, C,
is dense in {1.
Theorem 7.2.2  The following are equivalent:

1. T, is regionally transitive.
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2. Every open set in §1 which is invariant under T, is everywhere dense in {1

3. If A, A’ are any open sets in {1 there exists ¢ such that T, (A)NA Y78

Proof. That (3) implies (2) is trivial. To show that (1) implies (3) we suppose an
z given with C, dense in f. For some s,t real we have T,(z)€A, T,(z)€A"’
and so T,_;(A)NA* # . It remains only to show that (2) implies (1). Let
{U;} be a countable base for the topology on L. C, is not dense in £ if and only
if for some n, C,MU, =(J which means that C, C{l — U,} and this is
equivalent to saying that there exists n with

z € ‘QR T,{Q1-U,}.

This happens if and only if

z€ ) A TA0-0,}

ne=]las€eR

We write A, = ( T,{01— U,} and note that 4, = U T.(U,) is open and
s €ER 8ER

flow invariant and so by property (2) is everywhere dense in 1. Thus A, is

nowhere dense. It follows from our remarks above that for some z €02, C, is

dense in {1, since otherwise {1 (a complete metric space) is a countable union of

nowhere dense subsets — a contradiction with the Baire category theorem. O

A much stronger notion is topometric transitivity. The flow T, on Q2 is
topometric transitive if C, is dense in {2 for almost all z €11.

Theorem 7.2.3  The following are equivalent:
1. T, is topometric transitive.

2. If M is a measurable subset of {2 which is of positive measure and invariant
under T, then M is everywhere dense in {2

3. If M is a measurable subset of {1 which is of positive measure and D is an
open set in {I then for some ¢, T;(M)\D # J.

Proof. That (3) implies (2) is easy. To show that (1) implies (3), given M as in
(3), ind z €M with C, dense in {1 then there exists ¢ such that T,(M)N\D
contains T} (z) and so is non empty.

It remains to show that (2) implies (1). Let {U;} be a countable base for the
topology on §1. We define A, as in the proof of theorem 7.2.2 and noting that A~"
is open and T;-invariant we see that A, is measurable and T;-invariant. If
u(A,) > 0 then by (2), A,U, # (. But U, CA, sowe must have u(4,) =0
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and it follows that u{z : C, # (1} =0 as required. O

Before proceeding to deeper ergodic properties we consider, for functions
f € LY(Q), the existence of integrals of the type

[ 1T (2)de

Theorem 7.2.4 If f €LYQ) then f(T,(z)) is measurable as a function on
1X R with the product measure.
Proof. If A C{ define the "tube"

Tr(A)={(z,t): Ty(z)EA}.
Note that if O CQis open then Tf(O) is open, and hence measurable in {I1X R.
Now suppose A Cflis a Gyset, A = Foj O, then

n =]

{z,t): T(2)E A 04}

n =]

Tp(A) ={(z,t) : Ty(z) €A}

= A {@t): T(z)€0,}

n =]

= A Tr(0,)

n =]

so Tp(A)is a Ggset in 1 X R and hence is measurable.

Now suppose that E is a measurable set in . Weset E = A — N where
A is a Ggset and N is a null set. Clearly Tg(E) = Tp(A) — Tg(NV) and we
show next that Tg(N) is a null set. For positive integer A let
Ty(N) = {(z,t) : T,(z)EN, |t| < M} then

Tp(N) = MD Tw(N),

For € > 0 let O DN be an open set with 4(0) < e. If v denotes the product
measure on {IX R,

M
UTy(0) = [ o 11u0) v =L, [, 11u(0)(:t)d s dt

by Fubini’s theorem. But T, is measure preserving and so the inner integral is
#(0) and AT (0)) < 2Me. Letting ¢ — O we see that Ty (N) is a null set and
consequently that Tp (V) is a null set.
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We have shown that if EC{l is 4 - measurable then Tg(E) is v
measurable. If f is the characteristic function of E then f (T,(z)) is measurable
in X R. From this the theorem follows easily since any measurable f is a limit
of countable sums of characteristic functions. O

We next give the Von Neumann and Birkhoff Theorems for flows.

Theorem 7.2.5 If / €L%Q) there exists f* € L) with f* = f ‘0T, for
almost every r €1 and

— 0
2

S
“f‘ -5 [0 1 (T@)ds
as § — oo.

1

Proof. Set T =T, and define F(z) =L f(T,(z))ds. From HGlder’s
inequality on the interval [0,1], applied to the functions f (7,(z)) and 1, we know
that

[l < (frmers)”

from which it follows that

[F@)du

56 rrena) an
< L (T de du

= [ [ /(TP duds

using Fubini’s theorem. However, T, is measure preserving and f € L%(f)) and it
follows that F € L%(). We next note that

L7 (TENds = [ 1(Tuy(e)dn
= [ (T (Tu@)du
= F(T(2)

and so

S F(TiE) = [ 1(T,@)ds

ji=0
Applying the discrete theorem (theorem 7.1.1) to the function F and the
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transform T we find the existence of a function f* € L%(2) which is invariant
under T and such that

— 0 as n — o0 (7.2.1)

. 1 ®
'@ == [ 1(T,(2) do
Given that the limit
. 1
Tim 277, (@)ds
is known to exist almost everywhere we deduce from (7.2.1) that it is equal almost

everywhere to f* and is the L? limit of %Lu J(T4(z))ds. This proves the
theorem. O

In an entirely similar fashion one may prove the continuous version of the
individual ergodic theorem.

Theorem 7.2.8 If T, is a flow on the space £ and if f € L}(§2) then the limit
NN
1@ = hm Lt

exists almost everywhere, is integrable and flow invariant. Further, if #({}) < oo
then

L17dw =[] du
We also have the continuous version of Hopf’s generalization of the Birkhoff

theorem.

Theorem 7.2.7 If T, is a flow on Q,if f ,g €L'(}), ¢ > 0 and
£
[ o(T,@) ds — oo
as 4 — oo almost everywhere on {1 then the limit
£
[/ (Ts(2)) ds
im

o [Tg(T,(z)) de

exists almost everywhere. The function ¢ is measurable and flow invariant. The
function g ¢ is integrable over {1 and, for any bounded, measurable T,-invariant
function &,

#z) =

[ oth dp = [ fhdy

Proof. As in the proof of theorem 7.2.5 set T = T, and define
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Fe) = [ [(T.@)ds, G() = [ o(T,(x))ds.

The theorem follows by applying the discrete result (theorem 7.1.4) to the
transform T and the functions F,G. O

Of fundamental importance is the notion of an ergodic flow which is defined
as follows. The flow T, on the space {1 is said to be ergodic~ if, whenever M is a
measurable flow invariant subset of {3, either u(M) =0 or y(M) =0.

The function ¢ given in the previous theorem is measurable and flow
invariant thus, for an ergodic flow, it must be constant almost everywhere and the
following result is immediate.

Theorem 7.2.8 If T, is ergodic and f,g satisfy the hypotheses of theorem
7.2.7 then, for almost all z €1,

im b (Te@)ds LS du
v [ o(T(=)ds [ gdp

For a space §1 of finite measure we may take ¢ =1 in theorem 7.2.8 and deduce
that the time mean

lim — [*f(T,(z)) do
im — z
Jim £ 1(T(

is equal almost everywhere to the space mean

1
—_— d
() USRS
for the function f .

This important result says that an ergodic flow produces a good mixture of
the points in the space - for any L! function f the space mean is reflected
ultimately in the time mean along almost every trajectory.

A major concern with this result is that it can only be used if there exists a
positive L! function g with the property that

Lug(T,(z))ds — 00 as % — 00

almost everywhere on {l. The existence of such a function (at least on spaces {1 of
infinite measure) is far from clear. In order to understand this situation better we
need to consider the conservative and dissipative sets associated with a flow. Let
T; be a flow on . We say that z is a conservative point for the flow if T;(z)
remains in some compact set F for a sequence of ¢ tending to infinity. Otherwise,
if T;(z) ultimately leaves any compact set (for ¢ large enough), then z is a
dissipative point. We write C for the conservative set and D for the dissipative
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set and note that C b = 0. In the finite volume case the conservative set
comprises almost all of .

Theorem 7.2.9 If T, is a flow on a space §1 with p(fl) < oo then
W(C) = W)

Proof. Since {1 is locally compact we have a countable collection {F,} of
compact subsets of 1 with

N
Write FN = \U F. and, since p4(fd) < oo, we have g(FN) — p(Q) as N — oo.
n o=l

From theorem 7.2.1, u(C nFN) = u(FN), and so
W) =erm) = mer( J FY)
U (CnF”)]

fn o=l

> w(FN) for every N

and so ¢(C) = p(Q) as required. O
Concerning the existence of a function ¢ to satisfy the hypotheses of

theorem 7.2.7 we have the following result
Theorem 7.2.10 If T, is a flow on the space {1 then there exists an L!
positive function g defined on 2 such that

13

L g(T;(z))dt — oo as u — o0

forall z€C.
Proof. Since {2 has a countable base and is locally compact we can construct a
sequence of compact sets

FoCF,CF,C..., limFy =1
We may assume that for each n there exists ¢, such that

{.’L‘ : d(.’L‘,F") Sen} c Fn+l-

This is an easy but technical result — see [Nemytskii and Stepanov, 1960 p.477].
Let u(Fo) =mg MF, — F,_))=m,, n =12,.. and note that all of these
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numbers are finite. Clearly we have
o0
Q= U (Fn —Fn—l)UFO
n =]
and this is a disjoint union. We defineg : @ — R* by
g(.’l:) = (2" mn)_l if z€F, —F,_,
9(z) = mg! if z€F,
Clearly ¢ is measurable and | ¢ dp =2. Now suppose z € C, then there exists a
compact set F and a sequence {t, } tending to infinity such that z, = T, (z)EF.
Now F CFy for some N and we define p = (2N*! m (Fy.,))~! > O noting that
if wE€Fy,, g(w)2p. For each n we let s, be the real number satisfying
tn < 8 < tyyy and d(T, (2),T, (z)) = ey — if it exists. If such an s, does not
exist then the segment {Ty(z):¢, <t <t,4,} of the trajectory of z does not

leave Fpy,,. Thus if s, exists for only finitely many n we will have T, (z) € Fy,
all ¢ 2 T and trivially

[= =]
{7 o(Ti(e))de =
If infinitely many s, exist we claim that
inf(s, —t,) = €¢>0. (7.2.2)
n
To see this, observe that, on a subsequence if necessary, 2, — y in Fy, and that

d(T; (2,):T, (zs)) = €n. Thus (7.2.2) must be true by the continuity of the
flow. Note that

Lw g(Ty(z))dt > 2 f o(T,2)dt > 3 pe = oo

n =1

and the proof is complete. O
We are now in a position to prove the following result which characterizes
ergodicity.
Theorem 7.2.11  For a flow T, on a space {1 the following are equivalent.
1. T, is ergodic.

2. If M , M" are two measurable sets of positive measure then there exists
t > 0such that T, (M)NM"* # .

3. If f,h €LY(Q) then, provided L hdp +0,



section 7.2 125

o SN [ du
veo [Uh(Ty() dt [hdu

almost everywhere in (1.

Proof. We show first that (1) implies (3). If T} is ergodic then by theorem 7.2.3
it is certainly topometric transitive and it follows from this that the conservative
set comprises almost all of ). Thus we may find a function g satisfying the
hypotheses of theorem 7.2.8 and, from that theorem,

lim L (Tie)) e = lim [ 1(TE)d [ g(T(x)) d

v [Th(T(e))dt s = [ g(Ty(z))dt [ h(T(z)) dt

_ gf du
Lhdu

as required. To show that (3) implies (2) we let A be a positive integrable
function, we suppose M, M* are of positive measure and that T, (M)nM' =)
for all ¢t. If f =1, we have a contradiction to (3) if # €M. Finally we show
that (2) implies (1). Suppose A is a measurable flow invariant set with u(4) > 0
and p(A) > 0 - this immediately yields a contradiction with (2) if we take
M=AandM*'=A4.0

Corollary 7.2.12 If T; is ergodic and A ,B are two measurable subsets of §
of finite measure and p(B) # O then

l o
- 7'() 14(T(z)) at _ HA)

el me) e M)

for almost every z €1,

The last, and strongest, ergodic property we will consider is called mixing.
The flow T; on §1is said to be mixing if for any measurable subsets A ,B,C of Q
which are of finite measure and with u(B) # 0 we have

_ MTANO) _ wa)
¢ Vo WT,BNC)  HB)
The property we have just described is called “strong mixing" by many authors —

[Walters, 1982 p.40] for example. Note that if u(Ql) < oo then mixing is
equivalent to the condition that for A ,B measurable subsets of {}
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- A )u(B)
Jlim w(T,(4)B) = Jm—

We conclude this section by demonstrating the relation between the various
ergodic properties introduced so far in this chapter.
Theorem 7.2.13 If T; is a flow on the space {1 then each of the following
properties implies the next.

1. T, is mixing.

2. Ty is ergodic.

3. T, is topometric transitive.

4,

T; is regionally transitive.

Proof. To see that (1) implies (2) we assume (1) and, in the definition of mixing,
we let B =C be a T;-invariant measurable subset of {1 which has positive
measure. Thus we obtain

fim_ WT,(A)B) = W),

Now let A CB be of finite measure. Since B is T,-invariant it follows that
T:(A) C B and we deduce that #(A) =0. Thus B contains no subset of positive
finite measure and it follows that u(~B) =0. This proves (2). The remaining
implications in the theorem are immediate consequences of theorems 7.2.2, 7.2.3,
and 7.2.11.

7.3 Invariant Measures

In the previous section we assumed that the space £ came equipped with a o -
finite measure p and we defined the flow so as to guarantee that it preserved the
measure of Borel subsets of {1

In this section we briefly consider questions concerning the existence and
uniqueness of measures preserved by flows. To this end, let us suppose we have a
separable complete metric space (£},d) which is compact. Suppose further that 7
is a map from X R to {1 satisfying the first three properties of a flow. Namely:

1. mz,0) = z forall z €N
2. mm(z,s),t) = m(z,t+s) for all z €Ll and all ¢,s real.
3. mis continuous.

Let us consider the possibility of finding a measure ¢ on Borel subsets of {2 which
is invariant under the flow (we write T,(z) for m(z,s)) and such that p(f}) = 1. If
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we suppose further that T} is ergodic with respect to the measure u, then if E is a
Borel subset of {2 we may take f =15 and ¢ =1 in theorem 7.2.8 to see that for
almost every (1) z €02

WE) = tim - [*15(Ty(x))dt

This suggests a definition for a Tj-invariant probability measure. Given T}

defined on ), £ € and s a positive real number, one can define, for any Borel set
E

M, () = 7 ["15(T,(a))dt,

and this yields a Borel probability measure. However, this measure is not T,-
invariant — one needs to go further and consider limits (in the topology of weak
convergence) of such measures as s — oo. The interested reader is referred to
[Kryloff and Bogolioubov, 1937] for a full account ( see also [Nemytskii and
Stepanov, 1960 pp. 486 - 519] and [Walters, 1960 Chapter 6] ).

For a compact space {1 it is always possible to construct in this fashion a
T;-invariant probability measure on 2. How about uniqueness? The following
result gives some information on this point.

Theorem 7.3.1 If uis a T;-invariant measure on {I with respect to which T}

is not ergodic then there exists a T;-invariant measure ¥ on {2 and a Borel subset
E of 2 such that 4(E) > 0 and {E) =0.

Proof. Since the flow T, is not ergodic with respect to u there exists a Borel
subset A of Q which is T;-invariant with g(4) > 0 and p(A) > 0. Define a
measure V by

UF) = wANF)
for any Borel subset F of {1 and note that
UT(F)) = m(ANT(F))
= WT(A)NT:(F))
= WAAF) = !F)
and so Vis T;-invariant. Now set £ = A and the theorem is proved. O

Flows with precisely one invariant Borel probability measure are called
uniquely ergodic — we will return to a consideration of such flows in chapter
10.



CHAPTER 8

The Geodesic Flow

8.1 Definition

There is an enormous body of literature on the geodesic flow for manifolds of
constant (or even variable) negative curvature, In this chapter we will present the
basic results relating to ergodicity of this flow and will use for this purpose a
measure on the flow space which is derived from the Patterson/Sullivan measure
developed in Chapters 3 and 4. The more classical theory is based upon Euclidean
measure of the unit sphere and is to be regarded in some sense as a special case,

We start by defining the space on which the geodesic flow takes place. The
space, denoted by {1, comprises the set of all line elements in B. To be precise, at
each point z of B we consider a direction — defined by a point £ of § — and
think of the pair (z,£) as representing a direction at z.

Figure 8.1.1

Thus 2 may be identified with B XS. For (z,§) €1 we refer to z as the base
point, or carrier point, of the line element. A Moebius transformation v in M(B)
has a natural action on {1 defined by
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Vz,€) = [v()-rzi(—%rs]

We recall from section 7.2 that a flow acts on a metric space, and so we must find
a suitable metric on {l. Consider the function d : {2 X {1 — R defined by

d((zyf)y(yvn)) = p(z7y)+ |W—A($,y)f|

where p is the hyperbolic metric in B and A(z,y) is the matrix defined in section
1.3. Not only is d a metric on {1, but it is also invariant under the action of
Moebius transformations.

Theorem 8.1.1 The function d is a metric on §1, and if YEM(B) then
d((2,€), Ay,m) = d((z,€), (y,m)).

Proof. We start by proving the invariance. Since the hyperbolic metric in B is
known to be invariant we have only to prove

)y Ae) o) 1B e | = - AE)E]l. @)

7' (v) 7' (z)
However, from lemma 1.3.5, the left hand side of (8.1.1) is equal to
| v @) 7' (v)

)T~ Tr(e)T Aev)é

and since v’ (y)/ |7’ (v) | is an orthogonal matrix the result follows immediately.

Trivially d is non-negative, and is equal to zero if and only if z = y (for
p(z,y) is a metric) and |n — A(z,z) €| =0. But A(z,r) is the identity matrix,
and so d((z,£),(v,n)) =0 if and only if (z,£) = (y,n).

In order to prove symmetry we must show
|77—A(-’Byy)f| = |E—A(y,-’”)ﬂ|- (8-1'2)
Multiplication by A(y,z) does not change length and so

|U—A($7ﬂ)f| = |A(yy$)77 _A(yyz)A(zvy)El

but it is easy to check from the definition (1.3.7) that A(y,r)A(z,y) is the
identity and (8.1.2) follows.

Now for the triangle inequality. Given three points (z,£), (y,n), and (z,0) in
{1, we must show

d((z,6),(2,2) < d((2,€); (v,m) + d((v,m), (2,9)) . (8.1.3)
Select a Moebius transformation ~ in M(B) with 4(y) =0. Then, using a prime
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to denote the -image direction, we have

d((2,€),(y,m) = d(A2,6),(0,7")) = p(1(z)0) + In' — Az,0)¢' |

but A(z,0) is the identity and so d((z,£),(v,n) = o(¥(z)0)+ |n' —€'|.
Similarly, d((y,n), (2,2)) = p(¥(2),0) + |7’ —a’ |. Thus the right hand side of
(8.1.3) reduces to

p(A2)0) + p(A(2)0) + |0’ = &' |+ |n' —a' |

which is at least as big as p(7(z),%(2)) + |€' — a' | and, by the invariance of d,
(8.1.3) is proved. O

What does this metric really look like ? It is clear that the p component
measures hyperbolic distance between base points. But what of the other part? If
base points are the same (z=y) then d((z,6),(z,n) = |& —n| and we are
basically measuring the angle between directions at z. Thus we think of the
metric d as a sum of distance between base points and difference between angle at
the base points.

Our next task is to put a measure on the space {}, This can be done in
several ways. To begin with, define a measure M on {1 by the differential

dM(z,§) = dV(z)dw(§)

where, as always, V is the hyperbolic volume and w is the (# —1)-dimensional
Lebesgue measure on the unit sphere S. The measure M is obviously invariant
under any Moebius transformation 4 of M(B) since V is invariant under <, and
the direction & undergoes a rotation which keeps the w-measure invariant.

Any line element (z,§) determines a directed geodesic which passes through
z in the direction & We write 7_ and 7, for the beginning and end points of this
geodesic. Let z be the Euclidean mid-point of the geodesic and write s for the
directed hyperbolic distance from z to z, the carrier point of our line element.
Figure 8.1.2 illustrates the situation. We thus have a new set of coordinates on
the space {1 and a natural correspondence

(2,8) « (n-m4,8)

between the set of points (2,£) in £ and the space $ XS (minus diagonal) X R
Using these new coordinates, we define a measure M’ on {l by means of the
differential

2dw(n.)dw(n,)ds

M
|7y —n_ |22

(8.1.4)

In fact this measure is nothing new.
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Figure 8.1.2

Theorem 8.1.1  The measures M, M’ on {1 are equal.

Proof. To start with, we need to define the action of a Moebius transformation
on {2 in terms of the coordinates (n_,n,,s). We set

Mn—sm4s8) = (W(n-)(ny)s +d)

where d is a real number defined as follows. If z is the Euclidean mid-point of
the geodesic joining #_ to 7, and w is the Euclidean mid-point of the geodesic
joining ~(n_) to 7(n,) then d is the directed hyperbolic distance from w to ~(z).
Note that d depends on 4, 7_, and 7, but is independent of s.

The measure M’ is invariant under the action of any Moebius
transformation. To see this, note that

do(x(n) = ' ()"~ dw(n)
and that, by (1.3.2)

Nng) = vn2) | = 1 ) 12 1 () 12 |y — |

Now, with M and M' both invariant under Moebius transformations, the
Radon-Nikodym derivative is automorphic under the full Moebius group. But
this group acts transitively on the space f and it follows that M' is a positive
constant multiple of M.

It remains only to show that this constant is 1, and we consider first the
two-dimensional situation. By z = (§ —+)/(§++) we map the unit disc onto the
upper half of the £ = u + v plane, then
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ipo2lel _ 1]

1—|=z[? v
and
dV = 4dzdy _ dudv
a=1lz1% o

If n,, n, are on the unit circle and are mapped to %, 4, on the real axis then

dﬂldnz - d‘uld‘u2

. (8.1.5)
[ —ml? [, — v, |?
Consider the following diagram
wv
g
w, W,
Figure 8.1.3

An easy calculation shows that the Jacobian of the transformation
(v,v) = (u,8,) is cos /2. Thus

dudvd - cospdipdu, du,

M =
v? 292
But clearly,
U, — 4, —u
v=——| ! 2Icosxl) and ds=——| ! 2|d¢
2 2v
and so
2du du,ds
dM =

|"1_“2|2
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but this quantity is, by (8.1.5), dM' as required.

The proof proceeds by induction on the dimension n. It will thus be
important for us to distinguish between several spaces and measures in the
various dimensions. Write S*~! for the unit sphere in R*, B" for the unit ball
in R*, w"™! for the Lebesgue (n —1)-dimensional measure on $"~!, and V" for
the hyperbolic volume in B®*. Then M" and (M')" will denote the measures M
and M' in dimension n. For the inductive step we proceed as follows. The ball
B"~! is viewed as the set {z €B":1, =0}. Let D be a small ball in B*~!
centered at the origin, and consider A = D X $"~2, a subset of 2" ~1, We assume
that the theorem is true in dimension n —1 and so, in particular,

M"Y A) = V* YD) w*4S"*2%) = (M"Y (A) (8.1.8)
From A we now form a subset J of 1* as follows. First, let
D' = {z m=(2),0.0,% ) (T1yeensTy 1) ED and p(z,(zy, . . ., 2,_))) < €}.
Now set
© = {Ees*1: |£-5"7] < ¢},
and write J = D' X 6. Now
M"(J) = V*(D') w"*"Y(©)

~ V"_I(D) € wn—Z(Sn—Z) €

— EZ-M"_I(A) = 62'(M"_l)'(A)

provided € is small. We next need to compare (M"~')(A4) with (M™) (J).
Consider the cross-sectional diagram below. An easy calculation, using theorem
1.2.1, shows that § ~ ¢ for € small, and thus the set of directions available at each
point of D! is approximately 2¢. It is thus clear that

ary o) ~ Ly a)

and so, from (8.1.8), (M™) (J) ~ M*(J) for € small. Knowing that (M") is a
constant multiple of M", we deduce that this constant must be one, and the
proof is complete. O

We are now in a position to define a flow on the space {3. To this end
consider a function from 2 X R onto 2 given by

[(71—777+78 )7t] i (7]_,7]+,8 + t) .

This function forms the basis for the construction of the geodesic flow, and we
write, for any real ¢,
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Ys/es 77771 <S n-2

“— 7 — (Bn-l

Figure 8.1.4

gt(n—777+7s) = (71—77]4.73 +1).

Thus the action of g, on a line element is simply to slide it a directed hyperbolic
distance ¢ along the geodesic it defines, preserving the direction of the geodesic.
The reason for the term "geodesic flow" is now apparent.

It is trivial that the measure M’ defined by (8.1.4) is invariant under the
action of g, and hence, by theorem 8.1.1, so is M. In fact, guided by (8.1.4), we
may construct another measure on {}, one which is derived from a conformal
density. Let I' be a discrete group preserving B, and let o be a conformal density
of dimension a. We further suppose that I' is non-elementary and so has a
positive exponent of convergence (corollary 3.4.5). It follows that «a is positive
(corollary 4.5.3) and, for z € B, a measure m, may be defined on {1 by

do,(n-)do,(n,)ds

dm (8.1.7)
: I'l+ - n- |2a
If y€T and n € S then we recall, from the properties of a conformal density, that
2o:0m) lv* () |«
da,(n)

This, combined with (1.3.2) and the fact that

An_n4ss) = (Y(n-)¥(n4)ss +4),

where d is independent of s, shows that m, is invariant under 7€T.
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Given a discrete group I' we move to consider the quotient space §2/T. The
map g, has an action on /T’ by virtue of the fact that it commutes with any
Moebius transformation. In fact

g (-s1458)) = Yoy, + 1)

(Y(n=)(n4)ss +t +d)

9: (V(n-):An4 )8 + d)

= gt(7(n—vn+7s)) .

Invariance of the measures m,, M under Moebius transformations leads to
measures on the quotient space 1/’ which are also invariant under the map g;.
To obtain such a measure on §1/T" from M we proceed as follows (the m, case is
analogous). A subset A of (/T is said to be measurable if, with 7 denoting the
natural projection map from Q2 to /T, 7 Y(4) is a Borel subset of 2. If D,
denotes a Dirichlet region for I, define A (D,) as the set of points in 77!(A) with
base points in D,. We then define M(A) to be the M measure of the set A (D,).

The metric d on {1 gives rise in a natural way to a metric on QT (simply
consider the minimal separation (d) of all lifts of a pair of points in £2/T"). With
metric and measure defined on /T it is routine to check that g, is a flow on this
space. It is called the geodesic flow. The terms ¢;,, M, m,, and d will be used
both on £ and on £3/T — no confusion should arise.

8.2 Basic Transitivity Properties

We begin by considering regional transitivity of the geodesic flow., With I' a
discrete group preserving B the flow g, is regionally transitive when there is an
element of Q/T' whose trajectory under the flow is dense in §}/T. It follows
immediately that the geodesic flow is regionally transitive if and only if there is a
geodesic in B whose I-orbit is dense in the set of all geodesics. In other words, ¢,
is regionally transitive if and only if there is a line transitive point for I', and we

have already seen that the line transitive set is non-empty precisely when I is of
the first kind.

Theorem 8.2.1 The geodesic flow g, on §I/T is regionally transitive if and
only if T is of the first kind.

The conservative and dissipative sets associated with a flow were defined in
section 5.2. Consider the element (1_,n,,s) of £ which we suppose to be a lift of
a conservative point in {I/T. As the geodesic flow is applied, we sweep out the
geodesic ending at 7, and return infinitely often to I~images of some fixed
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neighborhood of the origin. It follows that infinitely many members of I0) lie
within a bounded distance of a half-geodesic ending at #,. This makes 7, a
conical limit point. Thus a point of {I/T" belongs to the conservative set if and
only if it determines a geodesic that ends at a conical limit point.

Recall that a flow is said to be conservative if the conservative set has full
measure in the space. However, we have two measures — M and m, — and will
modify notation to say that the flow is conservative (M) or conservative (m,).
We next prove the following result.

Theorem 8.2.2 Let I' be a discrete group preserving B with geodesic flow ¢,
defined on Q/T.

(i) If the conical limit set has full w measure then g, is conservative (M)
otherwise the conical limit set has zero w measure and g; is completely
dissipative (M).

(i) If the conical limit set has full o, measure then g, is conservative (m,)
otherwise the conical limit set has zero o, measure and ¢, is completely
dissipative (m,).

Proof. In view of the comments made just before the theorem it is clear that, in
either case, the conservative set has full measure if and only if the conical limit set
has full measure — with the appropriate measure on 9B.

If the conical limit set has positive measure (w) then, by theorem 2.4.4, the
group diverges at the exponent n — 1 and is thus ergodic in its action on S, by
corollary 5.2.4. Thus the conical limit set must in this case have full measure,
This completes the proof of (i). Part (ii) of the theorem is an immediate
consequence of theorem 4.4.4. O

We conclude the section by showing that the conservative property of g, is
equivalent to divergence of the Poincaré series.

Theorem 8.2.3 Let I' be a discrete group preserving B with geodesic flow g,
defined on QT.

(i) The flow g; is conservative (M) if and only if
=10 )" = oo.
7€T

(i) The flow g; is conservative (m,) if and only if

Y= 101 = oo.

~€T
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where a is the dimension of the conformal density o giving rise to the
measure m,.

Proof. We have already done part (i), it is a combination of theorems 2.4.6 and
8.2.2. If the series given in part (ii) converges then by theorem 4.4.1 the o,
measure of the conical limit set is zero and g, is not conservative by theorem
8.2.2.

To show that the divergence of the series in (ii) implies that the flow g; is
conservative we will follow a method suggested by Sullivan [Sullivan, 1982 p.62].
This method can also be used to give another proof of theorem 2.4.6.

We note from the proof of theorem 4.3.2 that with € > 0 given, there exists
R so that for |a | > R

o,(b(a:0,R)) 2 €.

Let A be the ball centered at the origin and of hyperbolic radius R. As in the
proof of theorem 2.4.8, we may restrict attention to those Y€T such that
NA)M A = (J without affecting the divergence of the series in (ii). Thus we
assume from now on that W(A8) (A = (J for all yEI-I.

)_‘l(x)

2.

Figure 8.2.1

Now consider the situation in figure 8.2.1 where the product X,(7) XZy(7)
determines the set of directed geodesics that pass first through A and then
through 4(A). Note, from our remarks above, that

0, (Zy(7)) 2 € (8.2.1)



138 section 8.2

for all y€TI. Figure 8.2.2 illustrates the situation when 4~! is applied to figure
8.2.1.

¥ (Z,(9)

@

Figure 8.2.2
The set 4~ 1(Zy(7)) will be written X, and we note that 0,(X) > e. Now

7, (7)) = o, (X))

= [ 17 @ o,
_ l—h-'(O)I?]
f[|s o) 4
> =000 (8.2.2)

where )\ is a group constant. Define J, a subset of £, by J = AX S, and note
from the definition of the measure m,, and the inequalities (8.2.1) and (8.2.2) that
for any y€T

mg(J ﬂg—(o,7o)’7(~’ ) > M e —(0.10)x

where N is another group constant. If we assume that R > 1 and that
n <(0,70) < n +1 then all line elements based in the shaded area of figure 8.2.3
and pointing towards ~(A) will be included in the set J (Myg_,(J) and it is
easily seen that
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Figure 8.2.3

mz(J () 9-n ) > & e —(0.10)x

for a group constant k. Thus the divergence assumed in the theorem will ensure
that

§lmzung-nm)) = co. (8.2.3)

Now let E, be the event J (M} g_,I(J) — ie., the event that a point of J moves,

under the geodesic flow, after time n into an image of J. The probability of this
event is given by

m, (J (M 9-.T(V))
m,(J) '

P(E,) =

We note that

P(En+m nEn) = P(En)'P(En+m IEn) y
and that there exists ¥ €I such that
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m, (AN 9 (I) N 9-m 1))
m, (%(J))

m, (Y(J) ng—mr‘("))
- m,(J)

m,(J M 9-m 1))
my(J)

P(En+m IEn) =

P(En)

where we have used the invariance of m, under the geodesic flow and under
Moebius transformations of I'. It follows that

P(En+m nEn) < P(En)P(Em)

We may now appeal to a Borel-Cantelli lemma (see [Billingsley, 1986 p.84] for
example) to deduce that P(E, infinitely often) = 1. But this clearly means
that almost every z € J is a conservative point for the flow g,, and the proof of
the theorem is complete. O

8.3 Ergodicity

Our main aim in this section is to prove that the geodesic flow is ergodic if it is
conservative. In the case of the measure M this has been proved by Hopf [Hopf,
1939] and in fact his ideas go through almost verbatim for the measure m,. We
will give the proof in full detail only for this latter case. We first need a lemma.
Recall that d denotes the metric on the quotient space §3/T.

Lemma 8.3.1 Let I be a discrete group preserving B and ¢ an a-dimensional
conformal density invariant under I There exists a positive, m, integrable
function X on Q/T such that for some real ¢ and all z, y € Q/T with d(z,y) <1

ﬂ%ﬁ)—l < ¢ d(z,y).

Proof. We consider the function f: {l/T — R* defined as the distance of the
carrier point of the line element to the orbit of the origin. Define, for r > 0, the
set B, as the f ~! image of the interval [0,r]. We first show that

lim sup 1 log m,(B,) < oo. (8.3.1)
r—o0 T

If / is a geodesic passing through the ball of hyperbolic radius r centered at the
origin then the hyperbolic length of the intersection of { with the ball is at most
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Figure 8.3.1

2r. If s is the hyperbolic distance from the origin to the geodesic then, by
theorem 1.2.1,

2
coshs =
[ =l
and so, since s <r,
€ —nl > 4e7".

Thus the total m, measure of all line elements lying on such geodesies is at most
a constant times re?*”. But, on /T, this set covers B, and (8.3.1) is proved.

Choose ¢ > 0 and define the function X\ by
)\(.1: = e—(2a+c)f(z)
noting that X > O for all z € {}/T. From the definition of f

—I‘ﬁﬁd(z—’uyf)lu—bl as d(z,y)—0
and, from this,
IMz) = My) | _ |e-Go+a/(2) — g~(20+a/ ()]
My) (2049 (¥)

e —(20t6)f (2)

= d(zyy)-e—(Z—aH)fTvT

for some z between z and y. Now, for d(z,y) < 1, there is a constant k such
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that
e~ (2)=1 (¥ <e 1/ (z)=-f ()]

< V@16

< ek dzy) < ok
and we have a constant ¢ such that

L(ﬁ%)}ﬁ)_l < ¢ d(z,y)

as required. It remains to show that X\ is m, integrable. On B,,, — B,, X is at
most ¢~(2*+9)% and the m, measure of B,,, — B, does not exceed that of B,
which is at most a constant times ne?*”, Thus

f ANdm, < c ne”**
BI+I_BI
and so

[xdm,=$ [ dm,

n/r n=0 By~ B,

©0
< Y, C ne™ < oo.
n =0

This completes the proof of the lemma.
The main result is the following.
Theorem 8.3.2 Let T be a discrete group preserving B and o an a-

dimensional conformal density invariant under I'. Let m, be the induced measure
on YT If the geodesic flow is conservative (m,) then it is ergodic (m,).

Before embarking on the proof we note again that this theorem remains true
if m, is replaced by M. In this latter form it is due to Hopf [Hopf, 1939] — our
present proof is modeled on his.

Proof. Let f, defined on YT, be integrable (m,) and let A be the function
constructed in lemma 8.3.1. Since g, is conservative we have from the proof of
theorem 7.2.10

T
Jim fo Moz (2))dt = +o0

almost everywhere (m,) on {}/T. Now consider the quotient
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T
_ [/ (gl=)de
[ Ma(a)dt

which, by theorem 7.2.7, converges almost everywhere (as T —o00) to a
measurable function that is invariant under g,. We write

F(z)= T]i_r.nwF(T,z).

F(T,z)

If we apply theorem 7.2.7 (with g replaced by X\, ¢ replaced by F, and & replaced
by sign F') we obtain

Jap M F ldm, < [op IS ldm, . (8.3.2)
Suppose f, is a sequence of L' functions converging (L!) to f/ and we write
T
z))dt
PRI WAULY
e L Mgy (x))de
Then from (8.3.2)
fn/r)\lF,, —F |dm, =0 as n — oo.

If each F, is constant then, from some point on, these constants agree and F is
constant almost everywhere., The point of these remarks is as follows. We wish to
show that when f is integrable, F is constant almost everywhere — theorem
7.2.11 then states that g, is ergodic. Our discussion above shows that it is
sufficient to prove the constancy of F for continuous f with compact support,
since such functions are dense in L'(m,). We assume from now on that f is
continuous with compact support.

The crucial step in the proof is to show that F takes the same value at
points which determine asymptotic geodesics. In other words, suppose that
z, z' € §1/T have the property that for a fixed real number a

d(9;(2),9t44(2')) =0 as ¢ — +oo.
Note that
! z'))dt
Fa') = tim o)
T2 [ Nae(a'))at
T
I (D)L

T
T —
= [ Mgrro (@)t
T
where we have used the fact that fo Mg (z'))dt is unbounded. A straightforward
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calculation shows that the difference
T T
[ (aGNdt [ ] (gea(e")at
T T
[ Mo@)dt [ Moo (a )t

is equal to the difference of
.(,T[(f (9:(2))=/ (944 (2" )))/M3: (2))INg: (2))dt
T
[ Mar(a))dt

(8.3.3)

and
T T
LS (geea(@' )t [ [M9:(2)=Ns+a (2 )))/ Mg (2))INg: (2))dt
T T
L Nt 4o (2" ))dt L Ng;(z))dt

Since f is continuous with compact support and \ has the property given in
lemma 8.3.1 we see that the expression given in (8.3.3) goes to zero as T — 00

and that the right hand factor in (8.3.4) does the same. The left factor in (8.3.4)
remains bounded. Thus we have shown

. (8.3.4)

F(z)=F(2').
The same conclusion is true if the elements z, ' are negative asymptotic in the
sense that for some real b

d(9-¢(2),9_144(2")) =0 as ¢ — +oo.

The function F lifted to {1 determines a I-invariant function on 8B X 3B (minus
diagonal) which, for almost all £€9B, is constant on £ X 3B and on 8B X &.
By Fubini’s theorem, this function is constant almost everywhere on B X 8B.
We deduce that F is constant almost everywhere on Q/T" and the proof of the
theorem is complete. O

Ergodicity of the geodesic flow may be related to the group action on
OB X dB. Given a measure on 9B (w or 0, say) we have the product measure
defined on AB X OB and the group action on this space defined in Chapter 6.
These notions are connected to the geodesic flow via the following result.
Theorem 8.3.3  Let I be a discrete group preserving B.

(i) T'is ergodic (w) on 8B X OB if and only if ¢; is ergodic (M).

(i) T is ergodic (0,) on B X 8B if and only if g, is ergodic (m,).

Proof. We prove (i) as the proof of (ii) is identical. If I' is not ergodic on
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OB X OB then there exists a subset @ of B X 8B which is invariant under I
and with the property that both @ and its complement have positive measure
(w X w). Define a subset @' of §1 by

Ems)eQ = (EmeEQ

The set Q' is clearly of positive measure (M) in  and, being invariant under T,
gives rise to a subset of positive measure in §}/I. This subset is clearly g;-
invariant and the same comments apply to its complement. It follows that g, is
not ergodic. The argument is clearly reversible and the proof of the theorem is
complete . O

To conclude this section we relate ergodicity to group divergence at various
exponents. The results below summarize what is known concerning ergodic
phenomena relating to the two measures M and m,.

Theorem 8.3.4 Let I' be a discrete group preserving B with measure M on
the line element space §}/T" derived from Lebesgue (n —1)-dimensional measure w
on 9B. The following are equivalent:

1. The conical limit set has full measure (w).
¢; is conservative (M).

g; is ergodic (M).

I'is ergodic on B X 8B (w X w).

S 0= hO D =co.

;oo W

Proof. Theorem 8.2.1 shows 1 <> 2, theorem 8.3.2 shows 2 <> 3, and theorem
8.3.3 shows 3 <= 4. The equivalence of (1) and (5) is given in theorem 6.3.3. O

In terms of measures derived from a conformal density we have the
following.

Theorem 8.3.5 Let T" be a discrete group preserving B and o a I-invariant
conformal density of dimension ¢. The following are equivalent:

1. The conical limit set has full measure (o,).

2. ¢, is conservative (m,).

3. g is ergodic (m,).

4. Tis ergodic on 8B X 9B (0, X 0,).
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5. T (1= n0) [)* = co.
~€T

Proof. The equivalence of the first four properties has, as we remarked in the
proof of theorem 8.3.4, been established in this chapter. Theorem 8.2.3 shows
that (1) is equivalent to (5). O

In terms of a manageable criterion to check for the ergodicity of the geodesic
flow, we should recall theorem 7.2.9 which shows that if the space /T has finite
total measure then the flow g; is conservative — hence ergodic. The following
result is an easy consequence of the definition of the measure M on the quotient
space.

Theorem 8.3.6 Let I' be a discrete group preserving B and with Dirichlet
region D centered at the origin, then M(£2/T") < oo if and only if the hyperbolic
volume of D is finite.

In the case of the measures m, it is very difficult to check whether
m, (YT} < oco. In fact we will be devoting the next chapter to this topic.
However, as the next result shows, this is a worthy endeavor.

Theorem 8.3.7 If T is a non-elementary discrete group with a conformal
density o such that m,(Q2/T"} < oo then

1. the dimension of o is &I') — the exponent of convergence of I

2. 0 is unique.

3. ogives full measure to the conical limit set.

4. g, is ergodic (m,).
Proof. Parts (1) and (2) follow from (3) as in Chapter 4, and (4) follows from (3)

as we have seen in theorem 8.3.5. Property (3) is true by theorems 7.2.9 and
8.22.0



CHAPTER 9

Geometrically Finite Groups

9.1 Introduction

If T is a discrete group preserving B and o is a [-invariant conformal density of
dimension a then we have seen in the previous chapter how to define from o a
measure m, on the quotient line element space /I, For our major applications
we will work with groups T for which m, (Q/T) is finite. Our aim in the first two
sections of this chapter is to show that geometrically finite groups have this
property. In this first section we develop a test due to Sullivan [Sullivan, 1979]
which gives a sufficient condition for m, (§}/T) to be finite.

We start by considering the average time which a trajectory spends in a
bounded set @ of }/I. The m, measure of a bounded set is finite, and the flow
¢; is measure preserving. If the flow is dissipative then almost all trajectories
spend only a finite amount of time in @ and we have

. 1T s dt =
Jim o fo 1q(S(v))dt =0

almost everywhere. If, on the other hand, the flow is conservative then it is
ergodic, and we know from the ergodic theorem that

1T
Jim oo fo 1q(0(v))dt = k

where k = 0 unless m,(Q2/T) < oo in which case

_ m(Q)
m@/1)

Putting these ideas together we have the following lemma.

k
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Lemma 9.1.1 Let T be a discrete group and @ a bounded subset of Q/T.
There exists a constant k such that for almost all (m,) v in /T

im L[ 10 (g @)t = k
Jim =[5 1g(e(v)dt = &

The value of £ is zero unless m,(Q2/T) < oo, and in this case

 m(Q)
Sarxviv)

Using this lemma we will next prove a condition which is necessary for

mz(n/r) = 00.

Theorem 9.1.2 Let T be a discrete group with a conformal density o of
dimension a. If m,(§}/T) = oo, where m, is the measure derived from the
conformal density, then

lim o 2 e=e(s12) = 0,
T—oo T '16)[‘
(s,75)ST

Proof. We will consider the case z = 0, for the general situation is an easy
modification of this. We denote a generic point of {1 by v =(§,m,s). Now if
Q@ CQand £ €S we define

Qe=(EXSXR)NQ
in other words, @ represents the points of @ lying on geodesics starting at &.

Figure 9.1.1
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On Q¢ we consider the measure
do,(n)ds
& —n|%>

and note that
dm, = do,(§)d.

Choose a ball A centered at the origin, and let the set @ be the collection of all
line elements based at points of A. If €€EOB and T > 0 we define

F(T$)=—= >\{9:(Qe) N U AQMNQg) -

(0.1%<1‘

This quantity is the average time spent by the flow lines starting in Q¢ in images

of @ to a distance T from the origin. It is evident that if r denotes the
hyperbolic radius of A

1 1 ¢ T+2r
F(T8 < sgy fafTlo ney (o)t | dXw).
By lemma 9.1.1, the integrand above converges to 0 — provided that v avoids a
certain set of measure 0. So by the bounded convergence theorem

Jim F(T.§) =o. (9.1.1)

An alternative way to write F(T,§) is as follows

Ng_:((@))NQy)
N@Qg)

F(Ts)_—E

(0‘5<1'

_do(n)ds
Tx(Qc)(Msere o) (¥) TR

If, in the sum appearing in the last expression, we were to confine attention to
those YE€T such that 4(0) is close (say within Euclidean distance €) to the point
€' antipodal to & then we could assert that the factor |€ — 5 |?* is bounded
above and below, and hence also the arc length contribution to the measure.
Denoting by b(y:z,c) the projection of a ball centered at z and of radius ¢ from
y onto OB (this is the notation of section 4.3) we have, for € > 0O chosen and a
constant k& depending on this choice,
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Figure 9.1.2
1 do(n)ds
F(T,§) 2> ———
( E) =77 )‘(Qf) E lﬂ—r"’(Q)(v) IE -9 |2¢!

(ono)<17. EI(EH’ I<e

K .
>W E o(b(£:10), r)) .

o<t Fore 1<
By (9.1.1) we obtain

im Y, o(b(EA0)r) =0. (9.1.2)

T - 00 r
(o.w)<17. Er(OH' ! <e

If € > 0 is small then, since |Y(0) — &' | < ¢, b(§(0),r) is "close” to b(0,4(0),r).

To be more precise, we choose 0 < R < R' so large that if »r €(R,R') then
b(0:(0),R) C b(&:1(0)r) C b(0: 7(0),R" )

and also to ensure that we may apply theorem 4.3.2 to 5(0:4(0),R). Thus, by

that theorem, we will have from (9.1.2) above

LY @Ry =0 e T —ow

(ono)<;7, E,(E)—( |<e

Now the limit set of I is covered by a finite number of balls of radius € centered
at points £’ antipodal to points £ as above. Thus we may deduce from the above
that
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1 . o _
Jim ) r©:40),R) =0.
@SL‘
We now use the formula (4.3.1) for #(0: 4(0),R ) and see that
1
lim — 1-|740) |)* =0
fim 7 2, 0= 1O
d5<r
or equivalently,
lim 4 Y =010 = o

T =00
r
GS<T

as required. O

Using this result we will derive Sullivan’s criterion for a group to have a
quotient line element space of finite volume.

Theorem 9.1.3 Let T be a non-elementary discrete group with ecritical
exponent 8. If the Poincaréseries satisfies

Ee"(""’”") >_ A for s > 6
“s=9
n€T
where A is a constant, then m, (/1) < +oo.

Proof. Since I' is non-elementary, we know that § > 0 and that a conformal
density o of dimension § exists. For positive integer k£ write n; for the cardinality
of the set

{yET:k — 2 <(070) < k+}

and note from theorem 4.5.1 that there is a constant C with

n, < Cekl.

o0
The Poincaréseries 37 e~%(%™) with s > & is proportional to the series 3 n, e~
~€T k=1

which is majorized by the series § Ce~(*=9*% and so for a (different) constant C
k=1
we will have
N e « _C (9.1.3)
Jer s =96

Considering the tail of the series,
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o0 [o2]
S me ™™ < Y Bet-?)
k=T+1 k=T+1

= Be(T+1)6-0) {j ¢ k(6—2)
k=0

DeT(-9)

< ST (9.1.4)

for some constant D. We suppose now that for some constant F,

F
5 om0 >
~er s—b

for s > 4, and choose 7 so large that if T > 7 then
D F
TeTe 9 =2
If follows then from (9.1.4) that
L —a(0,40) F _ De T(6-a)
T Z\l{" > GAHT _ TE-9
((7.15«'
and, provided T > 7, the quantity on the right exceeds
_F
2(s—8)T"

Now consider a sequence {s,} monotonic decreasing to & and define
T, =1/(s, — 0) then we will have

1 T ¢=%(010) § F

Ty (0q0)<T. 2

however, since s, > §,

L 5 o £
Tn (0,70)< T, 2

and, using theorem 9.1.2, the proof is complete. O
9.2 Volume of the Line Element Space

Patterson has shown [Patterson, 1976a p.266] that finitely generated Fuchsian
groups satisfy the hypothesis of theorem 9.1.3 and so for such groups
m,(§1/T) < oo. In this section we shall be proving a result of Sullivan which
generalizes the result to any geometrically finite discrete group. We start with a
simple geometric lemma. The proof is a routine calculation and will be omitted.



section 9.2 153

Lemma 9.2.1  Suppose 0 is a geodesic segment of hyperbolic length T and, for
k 20, let A, be the set of points in B within a hyperbolic distance k of 0. Then
there exists a constant C, depending only on k, such that

V(4;) = CT.
where V is the hyperbolic volume.

From now on, for the remainder of the section, we assume that I' is a
geometrically finite discrete group acting on B. We recall some notation defined in
section 5.3. The Dirichlet region for I' centered at the origin will be denoted D,
and we intersect D with the set of points which are at most a hyperbolic distance
of K from the convex hull of the limit set of I. This intersection will be written
D(K). For §, n €S and K > 0 write D¢,(K) for the intersection of D (0) with
the set of points distant at most K from the geodesic joining & and 7. It is clear
that

D(K) = U D¢y(K)

where the union is taken over those pairs (§,9) with the property that the geodesic
joining £ to 7 lies in the convex hull of the limit set.

With all this notation in place we proceed as follows. Consider the function
@, defined by (5.3.2) then,

f by Bu(@)dV = 46.[ D(K)f SXS |E__1n|25'[°08h s en(2)]™%d pg(€) d ug(m)dV

from lemma 5.3.2, where s¢,(z) denotes the hyperbolic distance from the point z
to the geodesic joining & to n. Interchanging the order of integration we obtain

Jouu@av =4[ A [ ey dV | dii(€)d i)

SXS|¢ = [ | P5) [cosh ()]

4 1
> V(D¢ (K))d d po(m).
T sxs oo g VP aK N nel)
Now we use lemma 9.2.1 which tells us that the volume term V(D¢,(K)) in the
above integral is bounded below by a constant (depending only on K) times the
hyperbolic length of the geodesic D¢,(0). Thus, for a constant C depending only
upon I' and K, we have

fD(K)Mﬂ(z)]ZdV > Cfos Wfb«(o)dt d 1o(€)d 1o(n)-

The right hand side above is the m, measure of a set of line elements — namely
those line elements in D, which determine geodesics lying in the convex hull of the
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limit set. Since the measure g is concentrated on the limit set we might just as
well extend this set of line elements to include all of those based at points of D,,.
Then the inequality above becomes

fp([()[¢”(z)]2dv > Cfﬂ/l"dm” = Cm”(ﬂ/F) (9.2.1)

This condition for a geometrically finite discrete group to have a quotient line
element space of finite (m,) volume is just what we need. Combining equation
(9.2.1) with theorem 5.3.3, we have proved the main theorem.

Theorem 9.2.2 [Sullivan 1984] If T is a geometrically finite discrete group and
m, is the measure on /T derived from the canonmical conformal density of
dimension é then

m,(Y/T) < oo.
9.3 Hausdorff Dimension of the Limit Set

The reader will recall from chapter 4 that, for a convex co-compact group, the
Hausdorfl dimension of the limit set is equal to the critical exponent of the group.
We start this section by extending this result to groups I' for which
m, (/1) < co. In particular, the result is true for geometrically finite groups.
We write § (=§T) for the critical exponent of I' and p for the conformal density
of dimension 6 whose existence is assured by theorem 4.1.2. We suppose
throughout this section that m (Q2/T") < oo, where m, is the line element measure
derived from g — note that this property is guaranteed for any geometrically
finite group. From our discussions in the last section we know also that I" diverges
at the critical exponent.

We start with a result whose proof is an immediate (and minor)

modification of the proof of theorem 2.4.4.

Theorem 9.3.1  Let I' be a discrete group acting in B. If, for some 8 > 0,
D =10 1 < oo
~€T

then the conical limit set has zero $-dimensional Hausdorff measure.

As a consequence we have
Corollary 9.3.2 If T is a discrete group with critical exponent 6 then the
Hausdorff dimension of the conical limit set is at most é.

Thus, for any discrete group, d(C) < §I). We now consider the inequality
in the opposite direction. We need a lemma.
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Lemma 9.3.3 If m, (YT} < oo and if o(t,v,u) denotes the distance from
g;(v) to v then, with u fixed, for almost all (m;) v € YT,

lim L oft,0,u) =0.
t—oo ¢

Proof. Define the function ¥v) on /T to be the directional derivative of
o(t,v,u) in the direction v. Observe that |¢{v)| <1 for all v € Y/T and so, since
m, (Y T) < oo, ¥ is integrable (dm,) over }/T. Now since 1 takes opposite values
at line elements with the same base point, but pointing in the opposite direction,
it is immediate that

fn/rw(v)dmz =0.
Now g, is ergodic (since m,(£3/I)) < oo) and by the ergodic theorem, for almost
all (m,) v €YT,

Jm W (0)dt = [ x{o)dm, =0.

But

1T 1
/o Han(v))dt = o(T 0,u)=0(0,0,0)]
and the lemma is proved. O

The next lemma is the heart of the matter — balls centered over a large
part of the conical limit set, have p, measure not exceeding a constant times rée,
This, as we shall see, is exactly the property needed for the lower bound on the
Hausdorff dimension of the conical limit set.

Lemma 9.3.4 Let I be a discrete group with critical exponent 6 and satisfying
m,(QYT) < oo for the measure m, derived from the canonical conformal density
. If C denotes the conical limit set then there exists a compact subset K of C
such that u,(K) > 0 and for any € > O there exists ro > 0 such that if §€EK
and r < 1y

pe(BEr)/r < 4
were B(&,r) is the ball in S center £ radius r intersected with K.

Proof. Given ¢ > 0 and £ €S we define a region D;  C B in the following way.
Let z, be the point on the radius to £ which is distant ¢ from the origin and then

we say that u € D, ¢ i the geodesic joining u to z; makes an angle > % with the

geodesic joining O to z,. From the hyperbolic cosine rule [Beardon, 1983 p.148] we
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have that D, ¢ is the closure of the set

{u €B : cosh(0,u) > cosh(z;,u). cosh t}.
If 4(0) € D; ¢ then

¢(®1% > cosh(0,70) > cosh(z,,70). cosh ¢

1 (-’b’r ’10) t
> —e' e
4

and so if s > & is chosen
2 e~2(0,10) < 42~ 2 e—‘(zsﬂo) .
’13’10€D1,€ 777°eDt,€

If ~(0) is the closest image of 0 to z; then, writing o(t) = (z,7(0)), we have
from the triangle inequality

(7 ¥(0)) 2 (%(0),70) — of(¢)
from which

et 2 e—2(0,70) < 4% ao(t) 2 6—0(70(0),‘10)
7:¥0€ Dy g 7:70€ D g

< 48 ¢ 20(t) 2 6—5(70(0):70)
v€T

= 4° ¢ %0(t) 2 e—4(070)
~€T

Thus, using the notation of section 3.1 (noting that the group I' diverges at its
critical exponent), we have

oft
toa(Deg) < 2

If we write By ¢ for Dy ¢ N S then, from Helly’s theorem and the definition of the
measure fig, We obtain from the above

4 50(1)
to(B; ) < Z - (9.3.1)

Now B, cisa ball in S centered at £ and of radius r say. We next need to
compute r in terms of ¢ . The region D, ¢ is the intersection of B with an open
Euclidean ball centered at w say and of Euclidean radius A\ where [Beardon, 1983
p.157]
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Figure 9.3.1
1

sinh ¢’
Thus r =arctan((sink t)™!) and so, since 4e~f > (sink t)™! > 2¢7*, and
tand/8 — 1 as @ — 0, we see that for ¢ > ¢, say

8e t > > et

With r as above and € > O chosen,

Ho( By ¢) < 4elt)
b—e = bt g—t(b=¢)

r
= 466Mt)_€t

provided ¢t > t, It is a consequence of lemma 9.3.3 that, for almost all &,
@ — 0 as ¢ — o0o. We may find a compact subset K of C which has positive
measure and with the further property that if ¢ > ¢, and §€ K then —O%t—l < %
For such values of ¢
B
l"O( t,f) S 45

r b—e

and the lemma is proved. O

The main result is as follows.
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Theorem 9.3.5 Let T be a discrete group with critical exponent § and
satisfying m, (§}/T) < oo for the measure m, derived from the canonical
conformal density u. The Hausdorff dimension of the conical limit set is equal to

b,

Proof. As in lemma 9.3.4, find a compact subset K of C with u,(K) > 0.
Choose ¢ > 0 and find r( so that the conclusion of the lemma holds with r < ro.
Now cover K by a union of balls each of radius at most ro/2. If any such ball is
not centered on K it may be replaced by a ball of twice the radius centered on a
point in the intersection of K and the original ball. We assume then that all the
balls in the cover are centered on K and so satisfy the hypotheses of lemma 9.3.4.
We write

K CUB;
]
let r; be the radius of B; and note that
S > A, (B)
] 3

Z A ”’z(L;.JBl')

> Ap,(K)>0.
Thus K has positive (§—¢)-dimensional Hausdorff measure. We observe then that
the Hausdorff dimension of K is at least 6 — €. Thus

d(C)2é—¢

for every € > 0 and so d(C) 2 6. Combining this with corollary 9.3.2, the proof
of the theorem is complete. O

For a geometrically finite group the limit set comprises the conical limit set
and a countable collection of parabolic cusps and we have the next result.

Theorem 9.3.8  If I is a geometrically finite discrete group then the Hausdorff
dimension of the limit set is equal to the critical exponent.
We can use our ideas to prove a recent deep theorem of Sullivan [Sullivan,

1984] and Tukia [Tukia, 1984].

Theorem 9.3.7 If I is a geometrically finite discrete group of the second kind
acting in the unit ball B of R™® and if A denotes the limit set of I' then
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d(A) < n —1.

Proof. Let é denote the critical exponent of the group and note that

(1= o)) =00
7€T
but theorem 1.6.2 tells us that
- hOoh ! <oo
7€T
and s0 § < n — 1. We now apply theorem 9.3.6 to complete the proof. O
If we specialize to dimension n =2 (Fuchsian groups) we obtain better
results concerning the Hausdorff dimension of the limit set.

Theorem 9.3.8 If I' is a finitely generated Fuchsian group then the Hausdorff
dimension of the limit set is §I).

Proof. This is an immediate consequence of the fact that in the two-dimensional
case geometrically finite means finitely generated. O

Theorem 9.3.9 For an arbitrary Fuchsian group the Hausdorff dimension of
the conical limit set is §T).

Proof. Any Fuchsian group I' can be written as a union of finitely generated
groups

I = uT,.

If we write C, for the conical limit set of I',, and C for the conical limit set of '
then clearly

c,Cc
and so

d(C) 2 sup d(C,) = sup 6, (9.3.2)

where §, is the critical exponent of I'y. Now choose invariant conformal densities
wa) for T, of dimension §,. Find a sequence of indices so that
lim §; = sup 6, = 6' say, and p,(#) converges weakly to u,’ (as ¢+ — oo). Any

3 =—+00 [+ 1
element of T is eventually in T, and vy*u,(:) = 1, O, (¢) since p(¢) is an

invariant conformal density. Letting i — oo yields
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' =-|—|—,11, T
But this is true for each v€T, and so u,’ determines an invariant conformal
density of dimension é'. It follows from theorem 4.5.3 that 8’ > § — the critical
exponent of I. From (9.3.2) it follows that d(C) >4, and corollary 9.3.2
completes the proof. O
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Fuchsian Groups

10.1 Introduction

In this chapter we will specialize to the case n = 2. A discrete group preserving
the unit ball (disc) B in R ? is a Fuchsian group. We are singling out this special
class of groups for special attention because it will give us the opportunity to do
two things.

1.

We give a different presentation of the line element space, flows on this
space, and measures invariant under the flow. In contrast to our previous
derivation, which was entirely geometric, we adopt an algebraic approach.
This has the advantage of yielding algebraic formulae for the flows which
can be handled with more facility than the somewhat descriptive geometric
notions. Our approach is modeled on the work of Fomin and Gel'fand
[Fomin and Gel’fand, 1952].

We introduce the horocycle flow. This flow is closely related to the geodesic
flow and we will exploit the relationship to derive ergodic properties of both
flows. Additionally we will find that the horocycle flow enjoys properties
(minimality, unique ergodicity) which the geodesic flow does not. The
horocycle flow can be defined in n-dimensions, indeed it was introduced in
this generality by Hopf [Hopf, 1939], and has been studied by many authors.
However, it is simplest, and in some senses most natural, to introduce it in
the two-dimensional setting.

We will present an account of ergodic phenomena for Fuchsian groups which is
essentially independent of the treatment in chapter 8. This has the advantage of
making the chapter self contained and, more importantly, of demonstrating proofs
of the ergodic theorems which exploit the connection between the geodesic and
horocyclic flows. As always in the study of discrete groups, we have an upper
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half-plane model, and a disc model. Each has its own advantages and they are
sufficiently different to warrant separate sections.

10.2 The Upper Half-Plane

We define M(H) to be the group of Moebius transformations preserving the upper
half, H, of the complex plane. Thus

az + b

M(H) = cz +d

ta,byc,d €E R, ad — be =1],

We remark that M(H) is isomorphic to SL(2,R) / £I. We have a metric on
M(H) derived from the norm

o|| -

and M(H) is a topological group with respect to this metric.

az + b
cz+d

= [a2 +02+4c2+ d2]l/2

We wish to put a measure gy on M(H) and this is done by means of the
differential

dBd~ dé o B

dug(g) = T where g = [,1 5

— from now on we will frequently .identify the Moebius transform with its
At

v &) - d

associated matrix. Let ¢ = c

and write ¢’ = hog =

[:,' 6,']then we have
B' =aB+bé, o' =°(l+ﬂ’7)+d'y, 8 =cB+ds

and the Jacobian of the transformation (8,v,6) — (8',7',8') is easily calculated
to be 6’ /6. Tt follows that

dB' dv' dé' _ dfd~déb
o' ol
and we have shown that gy is invariant under left composition. An entirely
similar proof shows its invariance under right composition. A Borel measure on a

topological group which is both left and right invariant is a Haar measure, and we
have proved.
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Theorem 10.2.1  The measure py on M(H) defined by
dBd~ydd

dugy(g) = T where g =

is the Haar measure on M(H).

a p
v 6

We consider three subgroups of M(H) as follows :

k- { (= 9z) ven)

which is the stabilizer subgroup of 1. Note that the transform in K above is (at
t) a counter clockwise rotation through 4.
ty >0 }

4= { [ﬂ(')/2 y'o‘/z
is the group of homothetic transformations, and

N = { o F ]: z GR}
which is the group of translations.

If geM(H) with g¢(¢) = z+4y and arg(g'(:)) =0 then an easy
calculation shows that ¢ may be written uniquely as the product

= [t =]|v/* o [cos02 sin02]
9= l][O y~1/2 |\—sin 5/2 c039¢2 (10.2.1)

for 6€[0,2m). This corresponds of course to the Iwasawa decomposition of

SL(2,R) given by
[a bl _ 1 z] y/2 0 [cose s'1n0]
c d 0 1){ 0 y-1/2{{—sin @ cos @

which is a unique decomposition for & in the range [0,7). It will be very useful to
have the form of the invariant measure dpy in terms of (z,y,6) and from a
routine calculation,

B=yY2sin /2 +zy~'/2 cos 8/2, v =—y~'/2sind/2, &= y~'/2cos0/2.

From this the Jacobian of the transformation (z,y,8) — (8,7,6) is calculated to be
(—cos (8/2))/4y%/?, and so

d - dfBdvdé _ dz dy de
i I‘SI 4y2 '

We remark in passing that, since the upper half-plane may be identified, via

(10.2.2)
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(10.2.1), with M(H)/K, then (10.2.2) provides another proof of the fact that
dz dy

4y2

is an invariant area measure on the upper half-plane.

We next introduce line elements. A line element is defined to be a triple
(z,y,0) with z,y,0 real, y > 0 and 0 < 8 < 27. The space Iy of line elements
inherits the Euclidean topology as a subset of R2 and is in fact homeomorphic to
M(H) — the Moebius group on the upper half-plane — via the map
oy : Qy — M(H) defined by

[tz g2 o [c0302 sind 2]
$u(2:9,9) = |o 1] [ 0 yi2 —sine/v/z cos6§2 :
A group operation % may be defined on Qy by

(223 0%(u,0,0) = 97" [8(z.3.0) 0by(u,0,9)]

which makes ¢y a group homomorphism and gives {1y the structure of a
topological group. On {1y we define the measure M by
dr dy d0
dM(z,y,0) = —:fy—yz—
This is, of course, precisely the measure M introduced in section 8.1. The action
of M(H) on Qy can be defined in two distinet ways and we wish to consider both
of these. For h € M(H) we define

h‘(zvy’e) = ¢f;l [h‘ 0¢H(zvy ,H)] (10'2'3)

and
ba(e0,0) = 97" [ale.w00h] (10.2.4)

We next show that the measure M defined above is invariant under both actions
of M(H) on §ly. To this end suppose (z',y',0')=h(z,y,d) then
bu(z',u'8') = hoy(z,y,6) and so if we write
[ [ o
¢p(z',y'0') = [:/ g/ and ¢y(z,y,0) = [,1 g
then
al ﬂ'] _ [a B
[’1, &' = ho y §

dB'd~y'dd' _ dPdvyds

and G T4l from theorem 10.2.1. However, from (10.2.2),
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dz'dy'df’ dp'd~'dé dr dy d0 _ dBd~dé
T = 5" and T = 5
4(y') [&" 1y 16l
and we have shown the invariance of M under the action (10.2.3). The proof for
the right action is entirely similar.

Theorem 10.2.2  The measure M on {1y defined by

dr dy d@
2

M = at (z,y,@)

is invariant under both actions (10.2.3) and (10.2.4) of M(H) on .

We next want to realize line elements and the group action on them in
geometric terms. The line element (z,y,0) should be viewed as the point z + iy
of the upper half-plane together with a direction making an angle ¢ with the

upward vertical at =z + iy.
I
\é
X&f.uj

Figure 10.2.1

Starting with the line element (z,y,d) define the Moebius transform

_ lz] y¥2 0 [cos@é2 sin&?/2]
9= 0 1)|o y-1/2]| l—sind/2 cosb/2

and we verify that the action of ¢ on the point ¢ is to move it to the point
z + 1y, and that the vertical direction at ¢ is mapped to the direction making an
angle @ with the upward vertical at z + ¢y. Thus in terms of the action of a
Moebius transform on points and directions we would expect that

g(0,l,0) = (z,y,@).
This is in fact the case, and follows from the definition (10.2.3) because
9(0,1,0) = ¢z'(9045(0,1,0) = ¢7'(9)

since ¢5(0,1,0) is the identity, and we note that ¢5'(¢) =(z,y,6). We have the
following situation. Given a line element (z,y,d) there is associated a unique
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Moebius transformation g = ¢y(z,y,d) such that ¢(0,1,0) =(z,y,6). In other
words, ¢g(¢1) =2z + iy and arg(g'(¢)) = 0. Now what is the action of a Moebius
transform k on the line element (z,y,0) ? We verify immediately from (10.2.3)
that & moves the point z + ¢ty to h(z + iy) and the angle 4 is increased by an
amount arg(h ' (z + ty)). In other words & acts according to (10.2.3) exactly as
one would expect a Moebius transform (or indeed any analytic function) to act on
a point and a direction.

|

I "<e;

' < /—-—N X-o-l'.:
l

|

|

!
I
d

Figure 10.2.2

Put another way, if we regard a line element as a point z + iy together with a
unit vector £ (= ¢'?) then the transformation rule (10.2.3) says that

. h'(z + iy
bz + i), ﬁmﬁ s].
This is exactly the action defined in section 8.1. The transformation rule (10.2.4)
is of an entirely different character, it is the one we use in the next section to
define the geodesic and horocyclic flows, and we defer discussion of it until that
time. For the remainder of this section we are concerned with placing different
coordinate systems on the space {1y and computing the invariant volume element

dM in these new coordinates. There are three different coordinate systems of
interest.

hiz +iy,8) =

For the first we proceed as follows. Given (z,y,0) we determine the geodesic
passing through z + i1y in the direction 8 and let £ be the end point. We can
clearly write the line element as the triple (z,y,£) and can in fact calculate that

€ = 1 —y cot(9/2).

The Jacobian of the transformation (z,y,0) —(z,y,§) is seen to be
y /(2sin%(8/2)), and so
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Figure 10.2.3

dz dy d0
y2

dM = = 2sin?(9/2)

dz dy d§
y3
2dz dy d§

yliz +iy) — €I

which is the invariant measure element in (z,y,§) coordinates. The group action
in terms of these coordinates is found to be

h(z +1y, &) = (h(z + ), h(£))
It is further to be noted that if

¢H(3,y,€) =9
then ¢(:) =z + ty and g(o0) = &£.

Our second coordinate set is obtained as follows. Given (z,y,6), find the
geodesic passing through z + iy in the direction  and let %, £ be the beginning
and end points respectively. Now let s be the (directed) distance of z + 1y from
the highest point of the geodesic. This is precisely the coordinate set introduced
in section 8.1. We already know from section 8.1 the invariant measure in (7,£,s)
coordinates, but it is of interest to recompute it via the Haar measure. Let g be
the Moebius transform ¢gy(z,y,0) and note that ¢(0)=n, ¢(i)=7z + iy,
g(oo) = §. Then writing
a B
v 6
we have = /6 and £ = af/~ . We need to calculate the distance s in terms of

g=
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Figure 10.2.4
,84,6. In order to do this, suppose tu = g~'(z) then

plz +iy,z) = plg™\(z +iy),97'(2))

= p(i,in) = log(|u]).

Note that #u is the point on the imaginary axis whose g-image has the largest
imaginary part. But

. v
mol) = e
which is maximized when v = |§]/|4] . Thus u = |&]/]|~| and
s =log( 18]/ 1~1]), and we find
1 B
5 ° I
Angs) _ |L =L =1+ | =2
XBy,9) 6 2 ~62 83427
0 =1 1
~ ~
2dfBd~ydé 2 1
and so dndf ds = ————— . But we have |g(0) — g(00)|* = and so
nd§ 157622 l9(0) — g ()l o
dndfds _ 2dBd~ydé
In — €I 18l

is the invariant measure element in (n,£,s) coordinates.
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Our final representation of {1 is obtained as follows. Given (z,y,9),
determine the geodesic as before with & as its end point. Now construct a
horocycle at § passing through z + iy. Let r be the Euclidean radius of the
horocycle and s the directed (hyperbolic) distance measured along the horocycle
from z + 1y to the highest point of the horocycle.

Figure 10.2.56

The triple (&,r,s) determines the line element (z,y,0). Let ¢ be the Moebius
transform ¢g(z,y,0) and note that g¢g(i) =z + 4y and g¢g(oo) =& Thus
§=oafy=(1+ $7)/(7¥8). We need to represent r and s in terms of B,v,6. Note
that the horocycle H is the g-image of the horocycle {z : Imz =1} . Thus the
highest point of H is the point g(u + ¢) which has the largest imaginary part.
Now

1
(vu + 8% +~°
which is maximized when » = —§/~ and has a maximum value of 1/42. Thus
r=1 /(2’12) and to compute s we note that g preserves hyperbolic distance, and

we need only measure the distance from : to ¢ — §/~y along the horocycle
{z : Imz =1}. This distance is just §/y and we have

e ltp 1 _ 6
~

¥ 2v2’

Img(u +:) =

We calculate
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1 =1 =(1+pB)
) 5.72 ’162
AHrys) _ 0 -1 0 _
AB,,9) 43 464
-5 1
0o — =
y? v

and so
dfdyds dgdrds
2

dM = = 4y4dfdrds =
LR ,
is the invariant element of measure.
10.3 Geodesic and Horocyclic Flows

Consider the line element space {1y defined in the previous section. Recall that
for h € M(H) we have defined the right action

ha(e9,0) = 97" [bu(z.0.0) 0 ].

We will only use this action for three special types of transformation. For ¢ real
the geodesic flow ¢; and the horocyclic flow A, are defined on 1y by
et/ 0
gt(z’yye) = 0 e—t/z R(z’yye)

and

h(z,y,0) = [(1) f]k(z,yﬂ)-

The rotation R, is defined on {1y by

_ | cos a/2 sin a/2]
Ro(2,9.6) = | i af2 cos af2)r (z.9.9),

and it is routine to check that R (z,y,0) = (z,y,0+ ). Note that
et/ 0
gt(z’yyg) = ¢El ¢H(z’yy€) 0 e—t/z

h(z,y,0) = oz [‘i’H(z’y’e) (l) lt]]

and so g,(z,y,0) =(z,y,0) if and only if ¢ =0. Further, h(z,y,0) = (z,y,0) if
and only if ¢ =0. For any t,s real, g,09; = g,,; and h,0h, =h,,, . Thusin
each case we have a one parameter group of transformations acting on the space
0 and, from theorem 10.2.2, these transforms preserve the measure M on {1y.
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We wish to consider the geometric action of these flows. For g, let
v =¢y(z,y,0) with «(0) =19, u(oo)=§ Clearly, if v = ¢g,(z,y,0)) then
v(0) = n and v(oo) = £. In other words (z,y,0) and g,(z,y,6) determine the same
geodesic.

3. (15,0) *,4,0)

Figure 10.3.1

The point (z,y,d) is obtained as «(0,1,0) whereas g;(z,y,6) is »(0,ef,0) and so the
hyperbolic distance between the base points of the elements (z,y,0) and ¢,(z,y,6)
is the same as that between ¢+ and e’i. This distance is t. Thus g, represents a
flow, through a directed distance ¢, along the geodesic determined by a line

element. In terms of the coordinates (,£,s) introduced in the previous section we
have

gt(fl,f,s) = (ﬂ,f,s-l"t).

What about the flow k,? If we write v = ¢(z,y,6) with u(oo) = § then, writing
v = ¢y(h(z,y,9)), we have v(oo) =§&. The two line elements thus determine
geodesics ending at the same point £ Since the transform z — z +1¢ preserves
the line {z : Imz = 1} we note further that (z,y,d) and h(z,y,d) are both line
elements which are based on, and orthogonal to, the horocycle at &,
X = u({z : Imz =1}). The distance, measured on the horocycle X, between the
base points of the two elements is equal to the distance, along {z : Imz =1},
between ¢ and ¢ + ¢. This distance is t. Thus h; represents a flow, through a
directed distance ¢, along the horocycle determined by a line element. In terms of
the coordinates (&,r,s) introduced in the previous section we have

h(€r,8) = (&r,s + t).
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/
[

\
X

Figure 10.3.2

We conclude this section by deriving two important relationships between the
flows. The first relation is suggested by figure 10.3.3.

Figure 10.3.3

Four line elements are shown. A horocyclic flow from (1) to (4) could be
accomplished instead in three stages — a geodesic flow from (1) to (2), a
horocyclic flow from (2) to (3), and a geodesic flow from (3) to (4). Thus, given s
and ¢, we would expect to find reals #,v such that

gs0hy = hyo0g,.
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It is easy to show that v = s and not too difficult to compute u. However, we
prefer the algebraic approach. Note that
2
e’/? 0 [1 u]
0 e“”/z 01

1 t] ea/2 0
0 1 0 e_‘/z

if and only if s = v and v = te™® . This proves the following result.

Theorem 10.3.1  The flows g, h on Qg are related by :

g0hy = h,-0g,.

There is another relation between the flows and it is suggested by figure 10.3.4.

Figure 10.3.4

Starting with the line element (1) , rotate through 2mr—a to obtain element
number (2). Now apply the geodesic flow g, to arrive at (3). Another way to
arrive at (3) starting from (1) is first to apply the horocyclic flow &, to get (4) and
then rotate through 7 + o Note that a rotation through 27 — & is represented
by the matrix

—cosaf2  sinaf2
—sina/2 —cosa/2]"

Whereas a rotation through 7 + « is represented by

—sina/2 cosa/f2
—cosaf/2 —sina/f2|"

Given s then, we wish to solve the system
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—cosa/2 sina/2 ||et/2 0 1 s] —sina/2 cosaf2
—sina/2 —cosa/2)| 0 e~t/2) T 0 1)|—cosa/2 —sina/2

which reduces to the system

et/2 cosaf2

sina/2 + s cosaf2
e~t/?sina/2 = cosaf2 — ssina/2

e!/?sina/2 = cosa/2.
Thus e!/? = cota/2 and from the first equation we find cota = s/2. Now

solve for ¢ to find s = 2sinh(¢/2) and we have proved the next result.

Theorem 10.3.2  The flows g, b on {y are related by
h‘a = Rzr—ozoyt 0R21r—a

where R, is the rotation Ry(z,y,0) =(z,y,8 + \) and where cota=s/2 and
s = 2sinh(t/2) .

10.4 The Unit Disc

In this section we derive the line element space and the flows on it in the disc
model of the hyperbolic plane. Let D denote the open unit disc

D = {z:]|z]l< 1}

and let M(D) denote the Moebius group preserving D. If T € M(D) then we
have

z+a
A line element in D is a triple of reals (u,v,0) with u? +v%2 <1 and
0 < a < 27 Such an element is to be viewed as a point v + tv of D together
with a direction making the angle a with the positive real axis — see figure
10.4.1. We write £, for the space of all line elements. A Moebius transform acts
on {p in the obvious way — namely

T(z) = X o= et = 1].
C.

T(sw,0) = (ReT(u +4),Im T(u +iv),a-i- arg T' (u +w)).

Where + denotes addition modulo 2.

Exactly as in the upper half-plane, a line element in D yields a directed
geodesic and a horocycle as shown in figure 10.4.2. We can use these ideas to
derive a coordinate system on {15 which is much more natural for our purposes
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Figure 10.4.1

Figure 10.4.2

than the (u,v,a) system. With this new system the flows are easily and naturally
defined and a measure invariant under both Moebius action and the flows is fairly
easily derived. This work constitutes the bulk of this section, however, we will
also consider some other coordinates on {25, which have appeared in the literature
and develop the form of the invariant measure in these coordinates.

Consider the line element (u,v,a) and let & (= ¢'?) be the end point of the
directed geodesic determined by this element. Now construct the horocycle A
determined by the element and write w for the point where A meets the diameter
to £&. Let ¢ be the directed hyperbolic distance from 0 to w (measured towards §)
and write s for the directed hyperbolic distance from w to u +iv measured
clockwise around A. Figure 10.4.3 shows these quantities. The triple (8,¢,s)
determines the line element (#,v,0) uniquely and we use these new coordinates to
derive our flows and the invariant measure. We start by finding a measure on {1
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¥
Figure 10.4.3
which is invariant under Moebius action.
Theorem 10.4.1 A measure on {lp which is invariant under the action of

M(D) on § is given by the element
dmp = e' dfdtds .

Proof. Suppose T € M(D) and (8,¢,5)EQp. We write (8',t',5") =T (6,¢,s)
and we must therefore compute the Jacobian of the map. Now et = T(e"')
and so 89’ /3t = B8’ [9s = 0. 1t is geometrically evident that ¢’ is independent
of s andso Ot ' /0s =0. Thus

XNO't's') _ |46 ot'  Os!
ab,t,s) de ot Os

Evidently d8' /d8 = (T’ (e**) ¢'?)/ T(e*®) which must be real (since 8 and 8’ are
real ) and so

do'

ol IT! ('] . (10.4.1)

Writing r for the Euclidean radius of A and r’ for that of T(A) we recall from
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lemma 2.5.2 that

LT
1—r +r|T' (Y]
in other words
r! = T! (oi? r
1—1¢! 77 (") 1—r
However, a routine calculation shows that ¢ =log((1 —r)/r) and so
e~ = IT" (et . (10.4.2)
Thus ¢t' = t —log |T ' (¢**)|and so
o'
—_— =1 10.4.3
5t ( )

Considering figure 10.4.4 it is clear that s’ =s + d where d measures the
distance along the horocycle T(A ) from the point o to T (w).

Figure 10.4.4

This distance d depends only on &, t and T and so 3d/3s =0. Thus it follows
that
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Os'
Os
From equations (10.4.1), (10.4.2), (10.4.3), and (10.4.4) we see that
OO '8 ) It (i) = of -t
e e

which proves the theorem. O

=1. (10.4.4)

The advantage of this particular coordinate system is the ease with which
the flows may be defined. For v real define maps g, and &, from £ onto itself
by

h,(9t,s) = (Ot,s +v) and g,(9t,s) = (6,t +v,se”") .

Let us first show that these maps are flows.

Theorem 10.4.2 For any real v the maps 4,, g, are continuous one-to-one
maps of {lp onto itself. Further

1. A, is the identity if and only if v =0
2. h,0h, =k

v+u

3. h, preserves the measure my

The map g, satisfies these properties also.

Proof. This result is almost self evident. We shall just check that g, preserves
the measure mp. Writing (' ,t',s') =g,(6,t,s) we have ' =0, t' =t +v,
and s’ =se~?. Thus

o' ,t"s') _ et—t'
Ao,t,s)

and so e! d@dt ds is preserved by g, as required. O

We immediately recognize h, as the horocycle flow and in view of figure
10.4.5 we see that g, is the geodesic flow.

Theorem 10.4.3  For v real, the effect of the transform A, on the line element
(9,t,5) is to move its carrier point a directed hyperbolic distance v (clockwise)
around the horocycle determined by the element. At the same time the direction
stays internally normal to the horocyecle,

For v real the effect of the transform g, on the line element (6,¢,5) is to
move its carrier point a directed hyperbolic distance v along the directed geodesic
determined by the line element. At the same time the direction stays tangent to



section 10.4 179

e

Figure 10.4.5
the geodesic.
The next result is evident from figure 10.4.5, and also can be verified
immediately from the definitions.
Theorem 10.4.4 For u,v real
9y Ohy = hy—~o0g,

We next consider two other coordinate systems on §1. The first system is the
one with which we started the section — namely (uv,v,a). Now if T € M(D) we
have already seen that

T(u,v,0) = (Re T(u+),Im T(u +iv),a-i-argT'(u +w)) = (u',w',0")

say. It is clear that arg T'(u +1v) is independent of a and so da’ [Oa =1.
Since we know that

Ou'w') _ 1—-(')?—(v')*]?
u,v) l—u2-02%)2

it follows that the element

dm = dudvda
=T+
is invariant under Moebius action on §l,. The Radon-Nikodym derivative

dmyp [ dm is thus a function on £}, invariant under M(D) — and so reduces to a
constant. Thus there is a constant k such that
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kdudvda
[1—(z2+09))?
The other coordinate system which we consider is one which figures prominently
in the literature and is also the one we used previously in Chapter 8. It is
particularly easy to represent the geodesic flow in these coordinates. Given a line
element (u,v,a) let £ be the end point of the geodesic determined by the element,

let n be the initial point, and write s for the directed distance from u + v to the
point of the geodesic closest to the origin.

de =

i
Figure 10.4.6

The line element may be written as the triple (#,§,5). Clearly the geodesic flow
acts by the rule g,(n,§,5) = (n,€,5 + v). We wish to determine the measure my
in terms of the coordinates (n,£,5) and to this end we set n = e'?, € = e’ choose
T € M(D) and note that if

(ei'ﬁl ’ew’ I ') = T(ei"s,ewvs)
then e'¢' = T(e'$) and e’’’ = T(e'?). Thus
ap' _ o' _ 08 00’

= = = = 0

o0 Os o¢ 9s

and so
o' ,0' ,s) - ¢! 98" 0Os!
A¢,0,s) o 80~ Os
In figure 10.4.7 we observe that s ' = s + d where, if z is the mid point of the

geodesic joining 7 and £ and w is the mid point of the geodesic joining T'(n) and
T (&),

(10.4.5)

d = p(w,T(2)).

Thus d depends only on €7 and T so 8d/3s =0 and Os' /0s =1. From
(10.4.5) we have
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T ¥

Tep)

Figure 10.4.7
o' 0 s") _ Op' 99’
H¢,0,5) 9 = o0
Now e?¢’ = T(e*#) and so

d¢l . ei.ﬁ
LY = T
d¢ (e™) T(e'?)
and this must be real (since @, ¢’ are real) thus

do' i

LY = 4T (e

rralialt U Cadl
with a similar result for d8' /d8. Thus

At = el |
IT(CM) —- T(CN)IZ
Iei.b - ei0|2

and we have shown that the measure M defined on £, by

M = d(arg€) d(argn) ds
€ =l
is invariant under the action of M(D) on §1p. The Radon-Nikodym derivative
dM [dmp is thus a function on {1 which is invariant under M(D). But M(D)

acts transitively on £ and so this function is constant. Thus, for some constant
k,

dmp = kd(arg€) d(a;gn) ds
1€ =l
The measures we have introduced so far on the line element space — both in the
disc and in the upper half-plane — are all variations on the same theme, and are
all the same up to a constant multiple. We shall consistently use the letter M for




182 Chapter 10 Fuchsian Groups

these measures no matter what coordinate system is in use.
10.5 Ergodicity and Mixing

In this section we will consider ergodicity and mixing for the geodesic and
horocyelic flows on the quotient space with respect to the measure M. In view of
the fact that g, and A, both commute with Moebius transforms (this was proved
in section 8.1), they both have an action on the quotient space Sy / Tor Qp / T
In this section and the next we will use the symbol £ for the quotient line element
space. The measure M leads to a measure on {1 as outlined in Chapter 8. This
measure will also be denoted M. Similarly, the metric d on {1 is defined just as in
section 8.1.

In this section we consider Fuchsian groups of finite area and aim to show
that both the horocyclic and geodesic flows are mixing. All results given are in
relation to the measure M. To be precise, the words ergodic and mixing, when
used in this section, mean “ergodic (M)" and "mixing (M)".

It is important to note that the methods of this section cannot be applied to
prove ergodicity and mixing properties relative to the measure m, derived from a
conformal density as in section 8.1. The reason for this is simply that the
measure m, is not invariant under the horocyclic flow. In fact, we shall see in the
next section that, for many groups, M is the only measure invariant under the
horocyclic flow. It turns out that the geodesic low does enjoy a form of mixing
(weak mixing) but the proof of this fact is entirely different from the methods of
this section and will not be covered in this book. The interested reader is referred
to the work of Rudolph [Rudolph, 1982] for a full account.

Much of the work in this section dates to the 1930’s. For example, the
ergodicity of the geodesic flow was first proved by Hedlund [Hedlund, 1934] for
some special finite area groups, and was established in general for the finite area
case by Hopf [Hopf, 1936]. The mixing property of the geodesic flow was obtained
by Hedlund [Hedlund, 1939], and a simpler proof was given just after this by
Hopf [Hopf, 1939]. For the horocyclic flow the mixing property was established
by Parasjuk [Parasjuk, 1953]. Quite recently, Marcus [Marcus, 1978] has shown
that the horocyclic flow has a much deeper property called mixing of all degrees.

Our presentation combines the ideas of many authors and is simpler and
more direct than the original proofs. It includes some elements from Hopf’s 1939
treatise [Hopf, 1939] and also a very recent and delightfully elegant approach to
the mixing property of the horocyclic flow due to Weissenborn [Weissenborn,
1980].

We start by showing that for a discrete group I acting in the unit disk D, a
bounded integrable function on £ which is invariant under the geodesic flow is
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invariant also under the horocyclic low. This result is just as easy to prove
without the finite area assumption and so it will be stated and proved in this
generality. To begin with, we need the following standard result.

Lemma 10.5.1 Suppose f is a bounded, integrable function on 2, then there
exists a sequence {f, } of continuous functions with compact support such that

L If —f,]dM — 0 as n — oo.

Theorem 10.5.2 If f is a bounded integrable function on 1 which is
invariant under g, then it is also invariant under 4,.

Proof. Choose s real and we will show that f(A,(P)) = f(P) for almost all
P €Q. For the remainder of the proof s remains fixed at this value. Let {f,} be
a sequence of functions, continuous of compact support, converging to f as in
lemma 10.5.1. For € > 0 let N be such that for any ¢,

£ 1S (hy =t 9:(P)) = S n(hy o~ 0(P)) |aM = [ 1/ (a(P)) = fn(g:(P))| aM
= [ 11(P)—sn(P)ldM

€
<3

where we have used the fact that both flows are measure preserving. Now choose
t so large that

€

L IfN(ha e! gt(P)) _fN(gt(P))IdM < ? .

Putting these inequalities together we see that, for this choice of ¢,
L 17 (b o (P = f(@(PINdM < e
However, f is invariant under g; and so
f(g(P))=J(P) and [(h,  6:(P)) = [(g hs(P)) =/ (h(P)) -
Thus, for any € > 0,
LV (P)) = f(P)ldM < e
and so f (h,(P)) = f(P) almost everywhere as required. O

Consider now, for a discrete group I, the space £ and let ¢ be a function
defined on 2 which is invariant under both the horocyclic and the geodesic flows.
We may regard ® as a function on £ which is invariant under I' and under both
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flows.

Choose £€0D and consider two elements (u, v, &), (u',v', €) in §p.
These two line elements determine geodesics which end at &.

3

)

Figure 10.5.1

Let H be the horocycle at & through u’ + v ', and let £ + 1y be the point where
this  horocycle  meets the geodesic  through v + 1. Clearly
Pu', v, §) =Pz, y, § since P is invariant under the horocyclic flow. Also
Pz, y, §) = P(u, v, &) since P is invariant under the geodesic flow. Thus we
may define a function f on 3D by

[(€) = ¥u,v,8).
If ® is measurable then so is f and, noting that for y€T
Wu, v, §) = (Re(v + #v), Im~(u + iv),7(£))

we see that f is invariant under T

As a simple consequence of the definition of ergodicity we have the following
result.
Theorem 10.5.3 If I' is ergodic on 3D and ¢ is a measurable function on {2
which is invariant under both flows then ¢ is constant almost everywhere.

We can now prove the ergodicity of the geodesic flow.

Theorem 10.5.4 If I' is a Fuchsian group of finite area then the geodesic flow
on {1 is ergodic.
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Proof. Let A C{1 be a measurable subset of {1 which has positive measure and is
invariant under the geodesic flow. The characteristic function 1, is integrable
and is invariant under the geodesic flow. From theorem 10.5.2 we note that 1, is
also invariant under the horocyclic flow. If we can show that T is ergodic on 8D
then we may appeal to theorem 10.5.3 to deduce that 1, is constant almost
everywhere and this in turn would imply that g, is ergodic. However, the
ergodicity of I on 3D is an immediate consequence of theorems 1.6.3 and 6.2.3. O

We next aim to show that the horocyclic flow is ergodic for finite area

groups.

Theorem 10.5.5 If T is a Fuchsian group of finite area then the horocyeclic
flow on §1p /T is ergodic.
Proof. Recall that the flows are related by

hy = Ry 06 ORgp 4

where cotor = s /2 and s = 2sinh(¢/2). If f is invariant under the horocyclic flow
then for any P €f],

f(P) = f(ha(P)) =f(Rp-o Rogo (P))
and so
f(Rag_t(P)) = f(Rs0P)).
If X is any bounded integrable function on {2 then
[/ (Ra9—i (P)NP)dM = [ [(RuolP) NP) dM .

By a change of variables, since g, is measure preserving,

[T @RAP)Ng(P)dM = [ [(R,_(P)NP)dM .  (10.5.1)

We wish now to consider what happens as ¢ — oo. We need the following lemma
(which we use again later when studying mixing properties). The proof is omitted
as it is a standard estimate employing the density of continuous functions of
compact support in the space of bounded measurable functions on (2.

Lemma 10.5.8 Let f be a bounded measurable function on §I then
li R4P)—f(P)|dM = 0 .
Jim [ 17 (RoPY) = 1(P))

Using this lemma in conjunction with equation (10.5.1) and the fact that a —0
as { — oo we have
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Jim [ f(P)N@(P) M = [ [(RAPYNP) M  (1052)
for any bounded integrable function X on £3. From this it follows easily that

dim LT[ E ey aM @ = 1 RAP)NP) aM

By theorem 7.2.4 we can use Fubini’s theorem on the left hand side of this
equation rewriting it as

. 1 T
Jim [ [? [ Naey a
which, by the bounded convergence theorem, becomes

L1@) TIEEIOOLT_[)TX(%(P)) dt ]dM .

f(P)dM

However, since the geodesic flow is ergodic, we note from theorem 7.2.11 that the
term in square brackets above is equal almost everywhere to the constant

1

mjnx(P)dM.

Thus we have shown that
L 1(PYdM [ NP)dM = M(Q) [ [(RAP))NP)dM (10.5.3)

for any bounded integrable function A and any bounded integrable function f
which is invariant under the horocyclic low. Thus

P)dM
[ XP) f(RAP»—% M =0

and since this is true for any bounded integrable X we have

f(P)dM
f(RAP)) = jﬂm—)—

almost everywhere on {). Thus f is constant almost everywhere on ). We have
shown that any bounded, integrable, A,-invariant function reduces to a constant
and the proof is complete, O

Now we go on to consider the mixing property of the geodesic flow. In order
to prove mixing it is clearly sufficient to show that for any bounded measurable
functions f, A on 2
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dM  [xdM
tllmco L f(g_(P)NP)dM = —fﬂi— (10.5.4)

M(Q)

Once again we observe that it is sufficient to prove this result for continuous
functions of compact support on §. The following lemma is an immediate
consequence of the continuity of the horocyclic flow.

Lemma 10.5.7 If f, X are continuous functions of compact support on {1 then
for any € > O there exists § > 0 such that for all ¢

NP)dM | < €.

1 é
A [f (9-1(P) =5 [ J(o—¢ h(P)) ds
We are now in a position to prove our result.

Theorem 10.56.8 For a Fuchsian group of finite area, the geodesic flow on {1 is
mixing.

Proof. Let f,X be continuous functions of compact support on {1 then for any
real ¢

L5367t npnds |Np)am \(P) dM

I8 [’; L1 (s 9o ds

Mg:(P)) dM

- [lﬂf f (b (PY) ds

Mg (P)) aM

[ [ £ (P de
where we have used theorem 10.4.4 and the invariance of the measure M under

the geodesic flow. Since the horocycle flow is ergodic we have

! f dM
MY

llm —_() f(h (P)dz =
which we use in the above to obtain

faM [NdM

NP)dM = @)

Jgim |3 ) ds

In view of lemma 10.5.5 we have established (10.5.4) for continuous functions of
compact support and the theorem is proved . O
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For Fuchsian groups of infinite area one would expect the relation (10.5.4)
to hold with zero on the right hand side. In fact this is true, and has been proved
by the author [Nicholls, 1986]. We prove a slightly weaker version of the result
here. In this proof we will have to use an ergodic theorem from Chapter 8.

Theorem 10.5.9  For a Fuchsian group of infinite area which diverges at the

exponent 1, the geodesic fiow is of zero type. In other words, for f, X\ bounded
integrable functions on 2

tlimwfnf(g_t(P)x(P)dM =0.

Proof. We observe that it is sufficient to prove this result for continuous
functions f, X\ of compact support. Using lemma 10.5.7 and proceeding exactly as
in the proof of theorem 10.5.8 we note that it is sufficient to show that, with

U = bet,
Jo [iU INIRT

converges to zero as £t —o0o. Now for fixed ¢ we apply the Cauchy-Schwarz
inequality, and noting that

N9y (P)) dM

)@@y = [ xxpydm

is bounded, it remains only to show that l/Uj;Uf (hy(P))du converges to zero
(L%) as U —o00. We remark that this quantity is, by theorem 7.2.6, a bounded
integrable function invariant under h,. To complete the proof then, we will show
that any bounded integrable & -invariant function # is zero. If' X is any bounded

integrable function on (), we may proceed as in the proof of theorem 10.5.5 to
obtain

fnu(R,,(P)))\(P)dM=fnu(P) Jim l—Tf)\(gt(P))dt M .

The term in braces in the right hand side is, by theorem 7.2.6, an integrable g,-
invariant function on . But, by theorem 8.3.4, g; is ergodic and so this term
must be constant. However, being integrable over a space of infinite measure, this
constant must be zero. Thus the right hand side above is zero for any X, and it
follows that the function v is zero as required. O
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Now for the horocyclic fiow.

Theorem 10.5.10 For a Fuchsian group of finite area the horocyclic fiow on
1is mixing.

Proof. (Weissenborn). For any real ¢ and measurable subsets A, B of
M(t(A) O B) = M [Reat RoraA) B | (1059)

Where we have used theorem 10.3.2 and we have cot o = sinh(s/2) = ¢ /2. Since
a rotation clearly preserves the measure M we have from (10.5.5)

M((A) 1 B) = M [0, Rorad) N Rusa(B) | (10.56)
Now for arbitrary sets X, X,, Y, Y,

X, NX) V(Y O Y) C X VY)YE, VY,
where V denotes the symmetric difference. So

(95(4) M) Ra(B)) V(95 R_s(A) M R rsa(B)
C (9:,(4) VgR_,(A)) U (Re(B) V R r1a(B))

=g, (A VR_,(4)) U (R(B) V Rya(B)). (105.7)
If we consider for example
M(A M R_oA) =], 14 (R_o(P)) dM

then, from lemma 10.5.6, M (A (| R_a(A)) = 0as a —0. From this it follows
that the measure of the right hand side of (10.5.7) tends to zero as o tends to

zero, i.e.,, as ¢ tends to infinity. Combining this observation with equation
(10.5.6) we have

Jim M (h(4) N\ B) = lim M g,(4) N R(B).

But we know that the geodesic fiow is mixing and so

M(A)M(R(B)  M(A)M(B)
M(Q) T MO

lim M (h(A B) =
m (h(A) N B)
and the proof is complete. O

10.6 Unique Ergodicity

In this section we investigate a phenomenon which is peculiar to the horocyclic
fiow. Since we have not been concerned with this topic for the major part of the
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book we have deferred its definition to this point. Let us suppose we have a fiow
[, on a space {1 then f, is said to be uniquely ergodic if there exists a unique
Borel probability measure on §1 which is invariant under f,. Let us denote this
measure by ¢ and suppose A C {1 is measurable and f,-invariant. If p(4) > 0
we may form a new measure M on {Q given by

wWENA)

HAa)
for any Borel subset E of ). The reader will check immediately that M is a Borel
probability measure on {1 which is invariant under f,. Thus M must coincide
with ¢ and we are forced to the conclusion that u(4) =1. We have shown that
[ is ergodic. But more than this is true. Knowing that f, is ergodic and that
#(QY) = 1 we may appeal to theorem 7.2.8 to obtain that, for any N\ € L'/ (f2),

Jim L N o(@))ds = [ dp (10.6.1)

M(E) =

almost everywhere in §l. Now suppose A is a set of positive u measure, then we
may take AX\=1, in the above and obtain a limit almost everywhere. But
suppose that for some z € §1(10.6.1) is false. In this case we may find a sequence
T, — oo with

. 1 T,
"1_15100-ﬁ—f0 14(f4(2))ds = C # p(A). (10.6.2)
Now we define a measure M, in the following way
1 T,
Mn(E) = T fo lE(fs(z))ds
n

It is routine to check that M, is a Borel probability measure. In the topology of
weak convergence some subsequence M, converges to a Borel probability measure
on {1. Call this new measure M and note that for any real u

M(f4(E))

T
lim —%—fo "17,(B)(/ s(2))ds

7 ==>00

Jim [ 15, (@)

L d

—e . T,
limw—%';—f_T; 1p(fs(2))ds = "lfflw‘%""fo 1pf4(z)ds

= M(E).

M is thus fiow invariant and must therefore agree with u. However, (10.6.2)
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guarantees that M(A) # u(A) and we have a contradiction. Thus, for indicator
functions, (10.6.1) must be true everywhere in {l. But it follows easily from this
that (10.6.1) is true everywhere in  for any L! function X.

In the other direction, suppose ¢ is a Borel probability measure on £ which
is invariant under f, and that for any A € L}())

T
Jm [\ (@))ds = fohd

for all z € Q0 If M is another Borel probability measure invariant under f, then

we may appeal to theorem 7.2.6, applied to the indicator function of any Borel
set, to see that M = p.

We have established the following result.

Theorem 10.6.1 The fiow f, on 1 is uniquely ergodic if and only if there
exists a Borel probability measure ¢ on {1, invariant under f, and with

Jim L[N (s = [ dus

for every L' function X\ and every z € {). In this case, u is the unique measure
guaranteed by unique ergodicity.

We define now the notion of minimality. The fiow f, on Q1 is said to be
minimal if every trajectory is dense.

Theorem 10.8.2  If the fiow f, is uniquely ergodic then it is minimal.

Proof. Let u be the unique Borel probability measure on {1 invariant under f,.
If the fiow is not minimal then there exists £ € Q and an open subset A of { with
fi(z)NA = for all s. We note that

17T
Jim o[ 14 (fu(@))ds =0 # w(A)
and by theorem 10.6.1, the fiow is not uniquely ergodic. O

We now consider the geodesic and horocyelic fiows for Fuchsian groups.

Theorem 10.6.3 If I is a non-elementary Fuchsian group then the geodesic
fiow is not minimal.

Proof. Since the group is non-elementary it contains a hyperbolic element, - say.
If « fixes £ and % then, for any s real, the trajectory of the element (&,7,s) is a
closed loop on the quotient space. O
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The horocyclic fiow may be minimal. Our next result was first proved by
Hedlund |[Hedlund, 1936].

Theorem 10.6.4 If T is a Fuchsian group of finite area then the horocyclic
fiow is minimal if and only if there are no parabolic elements in I’

Proof. If T contains a parabolic element then it is well known that a horocycle
H may be erected at the fixed point which is invariant under the stabilizer and
mapped outside itself by every other element of the group. Any line element
determining H does not have a dense trajectory. For the converse, suppose I'
contains no parabolic elements. Every point of B is a conical limit point for I’
and we deduce from lemma 2.5.2 that every horocycle has images of Euclidean
radius arbitrarily close to 1. We now appeal to Hedlund’s argument [Hedlund,
1936 p. 537] to see that any horocycle has I-images approximating any other
horocycle. In other words, every trajectory under the horocycle fiow is dense. O

We conclude this chapter by proving unique ergodicity of the horocycle fiow.
The result was first established by Furstenberg [Furstenberg, 1973]. Our proof
follows the method due to Marcus [Marcus, 1975] which can be used even in the
case of two-dimensional manifolds of variable negative curvature. In much of the
literature relating to unique ergodicity, the horocyclic fiow is defined somewhat
differently than the way we have defined it in this chapter, Consequently, we will
introduce a new fiow ¢, on £3 — this is the version used in [Marcus, 1975] for
example — and show how it is related to “"our" horocycle fiow 4,.

Given z € {1 denote by H, the horocycle through the base point of z which
is tangent to the unit circle at the initial point of the directed geodesic determined
by z. For s real denote by ¥,(z) the line element based on H, obtained by
sliding z around H, a counterclockwise directed distance s. It should be clear
that, with D, denoting a directed rotation through aoon §, ¢, =Dk, D,. It is
immediate from this that A, is uniquely ergodic if and only if ¢, has that
property. Thus we will concentrate on proving that ¢, is uniquely ergodic. It is
routine to check that, with g, denoting the geodesic fiow,

gt 0Py =Yyt 09t (10.6.3)

Start by defining a sequence {, = n log 2 (so ¢ =2") and a sequence {R,} of
operators on continuous functions on § given by

R,f(s)= 2L [2) 06, 04, (a)ds.

Our aim will be to show that {R, f(z)} converges uniformly to a constant as
n — oo, If this is the case then with f given and € > 0 chosen we find n so that
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Figure 10.6.1
R, f(z)—C| <
for all z € Q. Thus

Rnf(g—t.¢2"|'(z)) = 2%.[0'! O¢‘+2-,-(.’L‘)ds

1 rov(a+d
- 20+ 6 8, (z)ds
and the average of the sequence {R, f (g_; 0fy;(z))}/Z}h is
1 2n 5
7l ’f 0 ¢y(z)ds.

Thus, for ¢ sufficiently large
L[} 0,(z)d 2
To[o,(z)s—c(e

t
and, for all z € £}, lim ltfof 0¢,(z)ds = c¢. From theorem 7.2.8, the constant ¢

must be equal to fnjdu and, by theorem 10.6.1.,, we have shown that the
horocycle fiow is uniquely ergodic.

Our problem thus reduces to showing that R, f (z) converges uniformly to a
constant as n — 00. We need three lemmas. We state these lemmas with the
assumption in each that R, is the sequence of operators defined above and that
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the underlying Fuchsian group is of finite area with no parabolic elements.

Lemma 10.8.5 Foreachn andm >0

1 271
Rowmf = o YRS o¢j o4, -
2 j=0

Lemma 10.6.6 For each continuous f on €, {R, f} is an equi-continuous
family of uniformly bounded functions.

Lemma 10.6.7 For any ¢ > 0 there exists an integer N > 0 such that for all
y €Q, {d(v): k =0,1,2,...,N} is € dense in L

We defer the proofs for the moment and, assuming the lemmas, proceed as
follows. Set ¢, =m'13R,,j(z) and note from lemma 10.6.5 that ¢, is a non
z€

decreasing sequence. Set ¢ =limc,. Now let {n,} be a sequence with
R, f — F uniformly (by lemma 10.6.6). Note that F is continuous with
minimum ¢. By lemma 10.6.5

1 2" —1 _ =
Rysmf — '2-,;'j§0F0¢j og,=F.

Now F also has minimum c¢. If f(zo) =c¢ then F(¢;04, (zo)=c for
0<j<2™ —1. But since m is arbitrary we see that F takes the values ¢ on
an € dense set (lemma 10.6.7). Thus F = ¢ and, by the Arzela-Ascoli theorem,
R, f — c uniformly.

Thus, modulo the three lemmas above, we have.

Theorem 10.6.8 If I'is a Fuchsian group of finite area and with no parabolic
elements then the horocyelic fiow is uniquely ergodie.

Proof of lemma 10.8.5 By definition,
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R,f(z) = 2%[02"! 08,04, (z)ds
= fo 1 000, (x)ds
_ 2%.[02-:! Ogt.. 0¢s/2n($)d8

= folf 04:,09,(z)ds (10.6.4)

where we have used the definition of #,, and the equation (10.6.3). Thus using
these same things over again we will have

R,f odjogq = folf 09 00,1504, (z)ds
= f;-iﬂf 0g;, 00,04, (z)ds

= f;.iﬂf O¢“r.. 0g,,.(z)ds

1 2%(5
= 2_;’“)[ 0¢, 0g;  (z)ds.
It follows that
1 73 S (i
2_nj§oR"f o¢;og, = gm+n jogY M7 f ot oa,,(x)ds
1 om+s

= W 0 fod, 0 gt_m(z)ds
=R,inf

and this completes the proof of the lemma. O

Proof of lemma 10.8.8. Suppose y, z € {1, let H, be the horocycle through the
base point of z that is internally tangent to the unit circle at the initial point of
the geodesic determined by z. Figure 10.6.2 illustrates the situation. The
geodesic from this point of tangency to the end point of the geodesic determined
by y yields a unique element of {), denoted [y,z], such that Hy, ,) = H,. From
the definition we see that, for some u real,

¢u(z) = [y’z]‘
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12

Figure 10.6.2
Now for z,y € 1 and s real define a function k,y(s) by

b, (5)(7) = [0s(y),3].
This is shown in figure 10.6.3.

Figure 10.6.3

We need to gather some information on the function k. Refer to figure 10.6.3
where we have assumed s > 0. Note that X is a function of z,y only and that

ky(s)=v + X\
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With z,y fixed, k,,(s) is an increasing function of s. We need information on the
behavior of k,,(s) if z is close to y. In order to obtain this we conjugate to the

upper half-plane to obtain figure 10.6.4 in which ¢ and r are the Euclidean radii
of the two horocycles.

Figure 10.6.4

The transform

V(e) = et —EE—1)+1-¢
z—§
preserves the upper half-plane, maps £ to 0o and fixes 1 and a. It is easily
checked that the horocycle at £ is mapped to the horocycle

Im 2z = u_l—f) a—¢)
2r
from which it follows trivially that
a—1
T 06§

A similar calculation for v shows that

£t

which gives v as a function of s. Note that ¢, r, €, 1 are determined by the line
elements z, y whereas a is also dependent upon s. It is evident from this
relationship however that, given € > 0 there exists 6 > 0 such that for all
s,t -1<s <t <1 and 7z, y satisfying d(z,y) < ¢

s 2r.

v-—
s
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kzy(t) - kzy(s)

- .6.
g 1{<e (10.6.5)
This shows that k,, is Lipschitz and hence that
lim ilczy (s)=1 uniformly in s (10.6.6)
Y=z ds
and from this we deduce that
;i_r_x.lzk,,y (s) =+s uniformly in s . (10.6.7)

With these estimates in hand we proceed with the proof of lemma 10.6.6.
Given z and € > 0, if y is sufficiently close to = then
|7 09:(6s () = 1 0 9:(I$s(v)z]) | <€ for |s| <1 and ¢ >0

By our working above, we may assume |Ic,,y(s) —s|<efor |s] <1 and
I(d/ds Yezy (5)—1 | < € for almost every s with |s | < 1. We claim that for all
n>0

|R.f(2) — Raf (0) | < e (143117 - (10.6.8)

To see this, note that by choice of z, y, and ¢

IRnf (v) — folf o gt,([¢a(y)vz])ds

Jolf 08,0 8,1 05, (1$4(v)])is | < e
Now by definition of k,,

folf ogt_([(b,(y),z])ds = folf 09t.¢k,,(a)(z)ds'
Since |(d/ds)lczy(s) — 1| < € we have

folf 0g; 0 P (4)(T)ds — fol(diskzy(s)) (fog,00 s (2)ds| < ellf I

Since k is Lipschitz, hence absolutely continuous, we can use the change of
variables formula

k
Fo by (60) - ( 00,081 (o ds = [ 7)) 09,08, (2)ds

and deduce that
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k()
[ o, 08u(@)ds — By f (@) | < 11 Mk (1) =1 + @) | < 2€l1 1.

Now the last four displayed formulae yield (10.6.8) and the proof of the lemma is
complete. O

Proof of lemma 10.6.7 This result follows immediately from the compactness of
£1if we can prove that the map ¢, is minimal. By a suitable reparametrization of
the fiow it is sufficient to show that for some positive real ¢ the map ¢, is
minimal. Let us suppose to the contrary that every map ¢; is non-minimal.
Choose z, €l and, for each ¢ define

A; = closure {¢,;(zo):n €Z}.

We note that A, is a closed, ¢;-invariant proper subset of {}, and that ¢,
restricted to A; is minimal. Given ¢, the set of reals s > 0 such that A, = A,
must comprise rational multiples of { and must be bounded away from zero,
otherwise a dense subset of the trajectory {d,(zo):u > 0} lies in A,, and this
contradiets the fact that the trajectory is dense in {1 (theorem 10.6.4). Select a
minimal such s and define a function f, on the trajectory of z, by

f(@u(20)) = €/ f (), f(zo)=1.

If we have y €Q with ¢, (z5) — ¥ and ¢, (zo) — ¥ then ¢, _, (7o) — 2, and
so, by our remarks above, the fractional part of (v, — v,)/s tends to zero. Thus
the function f extends to a continuous eigenfunction for the fiow; i.e., a function
f satisfying f(@,(z)) = e?*®/2f(z), | f | =1. There are clearly uncountably
many different eigenfunctions, and this contradicts the separability of the space of
continuous functions on {1 O

10.7 A Lattice Point Problem
For a Fuchsian group I' we recall the orbital counting function

N(rzz,y) = card{YET:p(z(y) < r}.

We have by now established several estimates for this counting function, and we
are concerned in this section with its asymptotic behavior as r — oco. This can be
viewed as the hyperbolic analog of the Gauss circle problem. We will derive
asymptotic formulae both in the finite area and in the infinite area case and will
also consider angular distribution of orbits. All the results we give here will
generalize to the n-dimensional setting, the proofs given here will extend —
[Nicholls, 1983b), [Nicholls, 1986] — although the definition of the horocyclic fiow
in n-dimensions leads to certain complications. The results we give are due to
S.J. Patterson |[Patterson, 1975], and [Patterson, 1977 although his proofs are
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quite different from ours, using the Selberg theory of the spectral decomposition of
the Laplace operator. Similar analytic methods have been employed by Lax and
Phillips [Lax and Phillips, 1982] to obtain asymptotic estimates of the counting
function for a wide class of discrete groups of Euclidean and non-Euclidean
motions.

We assume throughout this section that I' is a Fuchsian group preserving
the unit dise and that no element of I' (except the identity) fixes the origin. Thus
the region D, defined in section 1.4 is a fundamental domain for I. If D, has
finite hyperbolic area then we say that I' is a group of finite area, and we write

V() = V(D).

We will be concerned with estimates on the proportion of circles centered at
the origin which are covered by group images of some fixed disc. Let A be a
hyperbolic disce of center ¢ and radius 6, we will assume that @ is not fixed by any
element of T (except the identity) and that & is chosen so small that I“images of A
are disjoint. We write w for angular measure and define

9(s) = w(fe:0(z,0) = s} TNA)) .

We have the following result.
Lemma 10.7.1  The function g(s) is uniformly continuous on (0,00).

Proof. Define n(s,A) to be the number of YEI with the property that
HA) M {z :p(2,0)=5} # J. An upper bound on n(s,A) is easily obtained via an
area argument — in fact this is what we did in theorem 1.5.1 — and we have

n(s,A) < k V{z :p(z,0) < s} s 2 s, (10.7.1)

where k is an absolute constant. Now consider a single image A' of A and we
claim that the difference in angular measures between the sets
& N{z:p(z,0)=5s—¢} and A& M{z:p(z,0) =5} is maximized if A’ s
internally tangent to the circle {z : p(z,0) = s}. To see this, note that for s large
and € small (compared to §), the intersection A N {z :p(z,0) = s} is essentially a
chord of &', and the difference above reduces to a multiple of the difference in
angle subtended at the Euclidean center of A’ by two parallel chords. Our claim
follows easily from this.

For s large and 6 small we illustrate the situation in figure 10.7.1 and we
calculate that X\ is asymptotic (as s — 00) to efe~®. Thus the difference in
angular  measures  between the sets A M {r:p(z,0)=s—¢ and
&' M {z :p(2,0) = s} is bounded by a quantity which, as s — oo, is asymptotic
to a constant times éce~®., Assuming this maximum difference is attained for

every single image A' of A which intersects the disc {z : p(z,0) < s} we obtain
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Figure 10.7.1
from the above, and (10.7.1), that |g(s) — g(s —¢)| is bounded above by a

quantity that is asymptotic (as s — 00) to
kdee ® V{z:p(z,0) <s}.

The proof of the lemma is complete when we note that V{z:p(z,0) <s} is
asymptotic to a constant times e®. O

If ' is a Fuchsian group of finite area then the geodesic fiow is mixing.
Interpreting this property in the ball we have the following result.

Lemma 10.7.2 If T is a Fuchsian group of finite area and if A,, A, are
measurable subsets of Dy X S then

M(A ) M(A
:I:LmooM[r(A ‘)ng‘(AZ)] = (27r113(DE)) 2

From this we prove our main covering lemma.

Lemma 10.7.3 If T' is a Fuchsian group of finite area and if ACD, is a
hyperbolic disc then

. w[{z:p(z,0)=t}nl'(A)] va)
S or = VD)

Proof. Let a €D be fixed and let A be a fixed hyperbolic disc centered at a. If
C is a ball centered at the origin of hyperbolic radius r we define
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A, =AXS, A,=CXS .

It becomes necessary at this point to consider both Euclidean and hyperbolic radii
of spheres centered at the origin. For the remainder of the proof, whenever s is a
positive real we set

sinh(s /2)
[1 +sinh?%(s /2)]'/?
noting that p(z,0) = s if and only if |z | =s, [Beardon, 1983 p.130]. We make
two further definitions. If 0 < ¢ < oo then set
X(t) = {zr:(z,)€g(A,) for some§E€ES}
and for any z € B set

I(z,t) = {€€S:(2,6)€g(A,)}.

Trivially, I(z,t) # (J if and only if £ €X(t). It follows from the symmetry of
the situation that if p(z,,0) = p(z,,0) = s then

w{I(z,t)] = wlI(zyt)] = L(s,t)

say. We are now in a position to use lemma 10.7.2, and we observe that

M (A ) M 9:(42)]

fxu) w{I(z,t) 1ra)(z)dV ()

_ ft+rL(s’t)g(s)sl~ﬁds
STy
where we recall that X(¢) is the annulus {z:t —r < p(z,0) < ¢t +r}. Now
observe that M(A4,) = M(g;(4,)) and
t+rL(s,t)w(S)s, ds,

M(gt(Az))=fx(t)wll(z,t)ld"(z)=ft_r(l—sr.»)z— ds
—9%1

We thus write M[I{A )M g:(42)]/M(A,) as the quotient of two integrals and,
from the continuity of the integrands, we see that for some s satisfying
t—r <s < t+r we have M[[YA )M 9:(42)l/M(A;) = g(s)/w(S). However,
by lemma 10.7.1, ¢ is uniformly continuous and so, given € > 0, we find r > 0
so small that

|MID4 )N e 4
| M4 w(5)

< €.

From lemma 10.7.2,



section 10.7 203

MITA)O%MA) M4
M{4;) 27 V(Do)

as ¢ — 0o, We note that M(A4,) = 27V(A) and deduce that

i 98 _ _V(4)
T T ViDy)

as required. O

From the covering lemma we obtain an asymptotic estimate for the orbital
counting function.

Theorem 10.7.4  Let I' be a Fuchsian group of finite area. If z,, ,€ B then
V{z:p(z,0) < s}
V(D)

Proof. Upon integration we obtain from lemma 10.7.3
i Vi{z:p(2,0) < t}OT(A)] V(4
t = o0 V{z:p(z,0) < t} V(Do)
Now choose € > 0 and find § > 0 so small that for t > ¢, say,

V{z:p(z,0) < t +6}
V{z:p(z,0) < t}

which may be done since V{z:p(z,0) < t} ~ ke!. We apply (10.7.2) to the ball
A of radius 6 and deduce that, for ¢ > ¢, say,

Vi{z:0(z0) <t +8} Q)]  v(a)
V{z:p(z,0) < t +6} V(Do)

Now if p(¥(4),0) < ¢ then ¥(A)C{z:p(z,0) < t +6}, and so
V(A)N(t,0,6) < V[{z:p(z,0) < t +6}T(Q)] .

N(s,x,x5) ~

as § — 00.

(10.7.2)

< 1+4e€,

(1+¢).

Using the inequalities above we see that, for ¢ > ¢,

N(t,0,0) < (+¢)?
V{z:p(z0) <t} — V)
A similar lower bound shows that

V{z :p(z,0) < t}
V(D)

N(t,0,a) ~ (10.7.3)

as t — oo.
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Now consider two points z,, Z, in B and let -y be a Moebius transform with
Yz,) =0, ¥(z,) = w, say. We write G =~T'~v"! and note that V(G)= V(I).
Clearly,

P(21,9(2)) = p(A(z1)(9(22))) = p(O g ¥~ '(w))

for any g €I It follows that Np(s,z,,z5) = Ng(s,0,w), and the theorem follows
from (10.7.3). O

For Fuchsian groups of infinite area we have the following result of
Patterson [Patterson, 1977].

Theorem 10.7.5 If T is a Fuchsian group of infinite area, and if z,, z,€EB
then

N(s,z,,25) = 0 [V{z:p(z,O) < s}] as s —00.

Proof. If I' diverges at the exponent 1 then the proof will follow along exactly
the same lines as that of theorem 10.7.4 with the role of the mixing property of
the geodesic fiow being played by the zero type property (theorem 10.5.9). In the
case that I' converges at the exponent 1 we have

Ee"’(o"”’) < 0.
~erl

Thus the integral f e ?2dN(s,0,z), and hence also the integral
f ¢ °N(s,0,x)ds converge. It is now clear that

N(s,0,z) = o(e®) as s — ©
and so
N(s,0,z) = o [V{z:p(z,O) < s}],
and the general result follows by conjugation as in the proof of theorem 10.7.4. O

Our last result concerns angular distribution of orbits. If @ is an interval of
the unit circle, s is positive, and ¢ € B then define n(6,a,s) to be the number of
~€T with p(0,7(a)) < s and arg (e ) EH.

Theorem 10.7.8  If I'is a Fuchsian group of finite area then
w(b) V{z:p(z,0) < s}
or V()

Proof. We need a covering lemma analogous to lemma 10.7.3. If we define © to
be the cone subtended at the origin by & then we have the following.

n(f,a,s) ~

as § — 00.
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Lemma 10.7.7 If T' is a Fuchsian group of finite area and if ACD, is a
hyperbolic disc then
i 2Hezp@0)=NONNAI _ v

The proof of theorem 10.7.6 follows from this lemma in the same way that
theorem 10.7.4 follows from lemma 10.7.3. Thus it remains only to prove the
lemma.

We fix A and define A; = AX S, now let C be a disc centered at the origin
and of hyperbolic radius r. We define A, = C X 8. It is useful to observe that
o) = eﬂ {z:p(z,0) < t} = U 9: ({0} x9)
o<a<t
and so g;(A,) is (for small r) a thin shell whose cross-section is approximately

9:({0} X 6) (i.e., O {z: p(x,0) = t}), together with a set of directions at each
point.

Explicitly, this shell is given by X(t) = {z:(z,§)€ g,(A,) for some €S}
and the set of directions at each point z of X(¢) is given by

I(z,t) = {€€S:(2,6)€g(4,)}.

For economy of notation we have used the same symbols X (¢) and I(z,t), as were
used in the proof of lemma 10.7.3 — their meaning of course is different now.
The shell X(¢) is a subset of the annular region {z:t —r < p(z,0) < t +r}. It
is important to note that, contrary to the previous situation, the values of the
angular measure w of two direction sets I(z,t), I(z,,t) associated with points z,
z, of equal modulus in X(¢) are not necessarily equal. This fact gives rise to an
added difficulty in computing M[I(A,)(M) ¢;(4,)l/M(A,), which is required for
the application of lemma 10.7.2.

We will show that given ¢ and s satisfying t —r < s < t +r, then
X(t)N{z:p(z,0) = s}
comprises an admisstble part, any two points of which have direction sets of the

same angular magnitude, and an inadmissible part which, for r close enough to
zero, is so small as to make no difference to our asymptotic estimates.

Accordingly, suppose z € X(¢t). Then, for some §€S, (z,§) € ¢;(A,) and so
the sphere {y : p(z,y) = t} intersects C. Join each point z of this intersection to
z by a geodesic ray and let §, be the direction at z which determines this
geodesic. We say that z is admissible if each such &, belongs to . To put it
another way, if z €X(t) then z is obtained by moving a distance ¢ from a point
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of C along a geodesic in a direction belonging to 8. The point z is admissible if it
can be so obtained from any point of C which is distant ¢ from z. Figure 10.7.2
illustrates an admissible point z and the set of directions I(z,t).

:D;f!JITMS " 9

Figure 10.7.2

It will be seen that if z,, 2o € X(¢) are both admissible and if |z, | = | z, |, then
I(z4,t) is merely a rotation of I(z,,t) and consequently the two sets have the
same angular measure.

As regards the inadmissible set we have the following.

Lemma 10.7.8  Given € > 0 there exists ry > 0 such that if r < ryand s, ¢
satisfy 1<t—r<s<t+r then the  inadmissible part of
X(t) {z : p(z,0) = s} has angular measure less than .

Proof. Suppose £ € X(t) is inadmissible. Then there exists a point z € C with
p(z,z) =t and such that the geodesic connecting z to z determines a direction at
z which does not belong to 8. On the other hand, z is obtained by moving a
distance ¢ from a point of C along a geodesic in a direction belonging to §. We
may as well suppose that this latter point is on the radius joining 0 to z. Figure
10.7.3 illustrates the situation.

A straightforward calculation shows that the Euclidean separation of the
two points &), &, of figure 10.7.3 is O(r) as r — 0 provided that p(z,0) > 1, say.
It follows that the radial projection of r onto S has a separation from the
boundary of 6 which is of the order O(r). Thus the radial projection of the
inadmissible set onto § is contained in a band of width O(r) around the edge of
0. Since 8 is an interval, this band has an area which approaches zero with r.
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Figure 10.7.3

Since the angular measure of our inadmissible set is the area of its projection onto
S, we see that the lemma is proved. O

We return to the proof of lemma 10.7.7 and note that

M) aAo) | = [y ol mg=ive). 0074

The right side of (10.7.4) is computed as a double integral — first over the sphere
{z:p(z,0) = s}, and then radially letting s vary from t—r to t+r. We
approximate this first integral, replacing X (¢)N {z : p(z,0) = s} by the slightly
smaller set eﬂ {z :p(z,0) = s} and then assuming that every point in the latter
set is admissible. The error obtained may be estimated using lemma 10.7.8. For
admissible z in X(¢) satisfying p(z,0) = s, we denote by L(s,t) the angular
measure w(I(z,t)).

Given € > 0 we find ry so small that if r < rgand ¢ > 1, say, then

MNA ) 040)]
ds,
wl{z :p(z,0)=s} O N (D) Tds

f”” L(s,t)s,

t—r (1 —s l2 )2
differs from 1 by at most e.

Similarly, for the same values of r and ¢,
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M gt(Az)]
E+1 L(s,t)s, ds,
[ im0

differs from 1 by at most e,

We proceed as in the proof of lemma 10.7.3 using the uniform continuity of
w({z : p(2,0) =5} O [(A)] (which follows from the proof of lemma 10.7.1), to
deduce that

L wlfeisz0)=0NOATAN | MTU) 94,
b oo w(0) oo M[A,)

By lemma 10.7.2, this latter limit is equal to M(A,)/(27V(D,)) and since
M(A)) =21V (AQ), we see that

_ wlE0=0Nn0NNAl _ v
t =00 w(6) V(Do)

This completes the proof of the theorem. O
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